The central problem in number theory and the mean value theorem of primes up to a given number x
Abstract
Volltext:
PDF (English)Literaturhinweise
Gauss CF. Disqnisitiones Arithmeticae, 1801. Springer, 1986.
Derbyshire John. Prime Obsession. Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Joseph Henry Press. Washington, D.C. 2003.
Ireland K, Rosen M. A Classical Introduction to Modern Number Theory.Second Edition. Spinger-Verlag, New York. 1990.
Davenport Harold. The Higher Arithmetic: An Introduction to the Theory of Numbers. Cambridge University Press, 1999.
Ingham AE. The Distributhionof Prime Numbers. Cambridge University Press, 1990.
Prachar K. Primzahlverteilung. Spinger-Verlag. Berlin, Gettingtn, Heidelberg. 1957.
Mihelovich ShH. Theory of number. Edition «Vysshaya shkola», Moscow, 1967.
Vinogradov IM. The Basics of Number Theory. "Lan" Publishing House, Sankt-Peterburg, 2009.
Nesterenko YuV. Theory of number. Publishing center «Akademiya». Moscow, 2008.
Buhshtab AA. Theory of number. Edition "Prosveschenie", Moscow, 1966.
Trost E. Primzahlen. Basel, Birkhauser, 1953.
Titchmarsh MA. The zeta-function of Riemann, 1930.
Selberg A. An Elementary Proof of the Prime-Number Theorem. Published by:Annals of Mathematics. Second Series, Vol. 50, No. 2 (Apr., 1949).
Tatuzawa T. and Iseki K. On Selberg's elementary proof of the prime-number theorem. Source: Proc. Japan Acad. Volume 27, Number 7.