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1. Introduction 
In this note we consider the spaces of Milyutin, Dugundji, Michael, and investigate geometric, 
topological properties under the action of certain functors in the category Tych −  of spaces and 
continuous mappings into itself. The concept of the Dugundji compactum, introduced by 
A.Pelchinsky (1), turned out to be very fruitful and led to the creation of important new methods 
in general topology. Answering a question from Pelchinsky, R. Haydon showed (2) that every 
Dugundji compact is dyadic (3). continuous image of the generalized Cantor discontinuity Dτ

. On the other hand, the Dugundji compacta are exactly the compact sets of the class  (0)AE . 
The theory (0)AE  of compacta was extended by AN. Dranishnikov (4) to absolute extensors 
in dimension n . Also in this paper, non-compact analogies of the Dugundji space, the Milyutin 
space, and Michael are defined. Their topological properties and geometric properties are 
studied using some covariant functors. Terminology and designation, not explained below, are 
the same as in the books (1,3,5).  
 
2. The main part 
For a Tikhonov space X we denote by ( )C X  the space of continuous functions defined on X 
with a compact-open topology. 
The linear operator : ( ) ( )u C X C Y→  is said to be regular if the following conditions are 
satisfied: 
a) the mapping : ( ) ( )u C X C Y→  is continuous; 
b) if 0ϕ ≥ , then ( ) 0u ϕ ≥  (that is, the operator is positive);  
c) (1 ) 1X Yu = , where 1 : {1}X X R→ ⊂  is a constant function. those. the operator takes 
constant functions to constants. Every continuous mapping :f X Y→  generates a regular 

operator : ( ) ( )f C Y C Y∗ →  by the formula ( )f fϕ ϕ∗ =  . 
If  X is closed in Y and for every ( )C Xϕ ∈  the restriction of the function ( )u ϕ  to X coincides 
with ϕ , then the operator is called the extension operator. 



If the mapping :f X Y→  is surjective, then the regular operator : ( ) ( )u C X C Y→   is called 
the regular averaging operator.  
Definition (4). R − a compact space X (or, R − compact) is called a Dugundji space if any C −
embedding :f X Y→  into the Tikhonov space Y , has a regular extension operator  

: ( ) ( )u C X C Y→ . 
Definition (1). A perfect epimorphism :f X Y→  is called Milyutin if it admits a regular 
averaging operator : ( ) ( )u C X C Y→ . 
A Tikhonov space X  is called a Milyutin space if there exists a Milutin epimorphism 

:f N Xτ → , where N − is the set of natural numbers.  

We call an embedding AR  in  AI , where A  is an arbitrary index set, standard if for any B A⊂
, the following relations are satisfied: ( )A B

Bt R R=  and ( )A
B Bt R π= , where through 

: A B
Bt I I→ and : A B

B R Rπ → - the corresponding design. 
Theorem 1. If  X is a Dugundji space. Then X is a ( )AE o  space. 
Evidence. Let τ  denote R   the weight of the space X . If ( )R Xω ω− = , then X  is closed 

in Rω . Consequently, X  is a Polish space. By Proposition 1.1.4 in (5), the space X  is ( )AE o  
is a space. 
Suppose that X R− − is compact and C −  is embedded in AR  and : ( ) ( )Au C X C R→  is a 
regular extension operator. In this case, the space X  is the inverse limit of the factorizing strictly 
ω  spectrum { , ,exp }B

X B CS X P Aω= . We denote by ( )A α   the subsets of the index set A  

whose ordinal α τ< . The mapping :P X Xα α→  is defined as a shallow ( )A X
t Pα α=  and 

:P X Xβ
α β α→  is the restriction of the mapping ( )

( )
B B

C CP Pα
α = . 

Now let the systems ( )A α  having the following conditions (properties) be constructed: 
I. ( )A o  is a point;  

II. If γ  is the limit ordinal τ< , then ( ) ( )A A
α γ

γ α
<

= ; 

III. For each α , the difference ( 1) \ ( )A Aα α+ − is countable; 
IV. For each α  and for all ( )f C Xα∈  the map ( )u f Pα   is consistent with the map 

( )( )Af απ  on the subspace \ ( )A AX R α
α ×  space AR ; 

V. For all α  and any 1( )f C Xα+∈  constraint and \ ( )1( ) A AX R
f P α

α
α+ ×

  is a factor of the 

through mapping ( 1)A απ + . 

From condition iii) it follows that the map (neighboring projections) 1Pα
α+  has a Polish kernel, 

i.e. we have the following diagram 
( ) ( )

1

1 \
1

A A

P

i
X X R

X

α
αα

α α
α α

π

α

+

+
+ → ×

 

 



By virtue of conditions (V), we define a regular extension operator 
( 1)\ ( )

1 1: ( ) ( )A Au C X C X R α α
α α α

+
+ + → ×  Polojaya 1 ( 1) 1( ) ( )Au f u f Pα α απ+ + +=   , where 

1( )f C Xα+∈ . It follows from property (IV) that the equality 1
1( )u f P fα

α α απ+
+ =  , 

where ( )f C Xα∈ . It is obvious that the map ( 1)\ ( ): A AX R Xα α
α α απ +× → - is open. 

Let us prove that the map 1
1:P X Xα

α α α
+

+ →  is also open. 
Evidence. In this case we have the following diagram 

( ) ( )

( ) ( )1

1 1

1 \
1

1

   4 3

      

1 2

          

   

P i
A A

P

X P X

X X X R

P

X

α

α α

α β α

α α
α α

α
α

π

α

δ

δ θ
+

+ +

+
+

+

⊂

↑ℵ

→ → ×

↓

↓ 

 

 
( ) ( ) ( )1 \A A Aα α ω+ =  

Where ( )
1: ( )AX R P Xω

α β α+ℵ × →  the continuous map generated by the regular extension 

operator 
( )

1 1: ( ) ( )Au C X C X R ω
α α α+ + → × ,

1

( )
1 1 1( )

: ( ) ( ), ( ) A
i X

i X X i X X R
α

ω
α α α αθ δ

+
+ + +=ℵ → ⊂ ×

 
Let 1 1,

ox Xα α+ +∈  1
1( )o oP x xα

α α α
+

+ = . Since the diagram (1) is commutative, there exists a point 
ox X∈  such that 1( )o oP x xα α+ = , 0

0( )P x xα α=  it is known that for each Aα ∈ , the space 

Xα  is a Polish space. Consider a sequence of points nx Xα α∈  converging to the point oxα  i. 

lim ( ; ) 0n o

n
x xα α αρ

→∞
= , where αρ  is the metric in Xα  

We show that there exists a sequence of points 1
nxα+   in the space 1Xα+  converging to the point 

1
oxα+  such that 1

1( )n nP x xα
α α α

+
+ = .  

Put 0 0
1 1 1 1

1( , ) { : ( , ) }nB x n x X x x
nα α α αρ+ + + += ∈ ≤  

( )
1 1( ) ( )n Ax R i X A xω

α α α+ +× ∩ =  
1

1 1 1( ( )) ( ( )) ( )n n nA x i A x C xα α αδ θ −
+ + +∩ =  

0
1 1 1( , ) ( ) ( )n n

nB x n C x D xα α α+ + +∩ = . 

It is obvious that for each n N∈  the set ( )1
nD xα+  is nonempty. Now for each n N∈  we choose 

from the points 1 1( )n nx D xα α+ +∈  so that the diagrams (2), (3), (4) are commutative. 

The sequence of points 1 2
1 1 1, ,..., ,...nx x xα α α+ + +  converges to the point 1

ox α+  and 
1

1( )n nP x xα
α α α

+
+ = . Hence, the map 1

1:P X Xα
α α α

+
+ →  is open.   

We construct a system of sets ( )A α   by transfinite induction. 



Let (0)A = ∅ , then 0X  - is a point. 

The family ( )fζ ζ τ<  in ( )C X   separates the points of X from the set. 

Assume that the sets ( )A α  are defined for all ordinals β τ<  and satisfy conditions (ii), (iii), 

(iv) and (v). Let ζ  be the first ordinal for which fζ  is not a factorization of the through 

mapping Pβ . By Theorem 6.27 (or Corollary 6.28 in (3)), for a function fζ  defined on AR  

there exists a countable subset of C A⊂  such that Cf g Pζ =    i.e. fζ  - depends on a 

countable number of coordinates or f  is a factor of the through mapping CP . 
In what follows, in the same way as in the proof of Theorem 3 in (2), we choose the index set 
B. 
Now we define ( 1) ( )A A Bβ β+ = ∪ . We have the following diagram 

( )

( )

\

A

A A

P t

X X R

X
β β

β
β

β

→ ×

   (2) 

The regular extension operator ( ) ( )( )\: A AC X C X R β
βυ → ×

 
 is defined by setting 

( ) ( ) ( )\| A AX R
f u f β

β
υ

×
= . Since for α β=   we put ( ) ( ) ( ),Af P f f C Xα ββυ π= ∈  . 

notice, that 
a) for each α , the space 1Xα+ . C-embedded in AX Rα ×  and has a regular operator 1uα+  

extensions (figure 1). Note that 1Xα+  Polish space. Therefore, 1Xα+   is the Dugundji space and 
( )1 0X AEα+ ∈ ;  

b) The spectrum of the { }, ,XS X Pα αβ α=  
 is completely ordered and ω  is complete, the 

neighboring projections 1Pα
α

+

  are open and have a Polish kernel; 

c) 0X  - is the Polish ( )0AE  space;  

d) By virtue of the openness of the neighboring projections 1Pα
α

+  by Corollary 3.3.27 (5) 1Pα
α

+  
soft.  
e) By the compactness of the space X  by the theorem of 3.2.17 in (5), the spectrum of the XS   
factorizing strict X  spectrum is R . 
f) lim XS −  is homeomorphic to the space X . 

Now, by Proposition 3.5.4. (5) the space  X  is the ( )0AE  space. Theorem 1 is proved. 

Theorem 2. The class of Michael spaces coincides with the class of Dugundji spaces. 
Evidence. Let X  be the Michael space and : AN Xψ →  an invertible surjection. Let T  be 
a zero-dimensional R − compact space, S − is closed in T  and : S Xφ →  



      , -invested in
'

A

i

N X R X C R

T S

ψ τ τ

θ θ φ

→ → −

↑ ↑

→


 
In view of the 0-invertibility of the map ψ , there exists : AS Nθ →   such that ψ θ φ= . It 

is obvious that ( )0AN AE∈ . By virtue of the zero-dimensionality of the compactum T  and 

( )0AN AE∈  there exists a mapping ' : AT Nθ →  such that ' iθ θ= . Consider the mapping 
' :T Xθ ψ θ= → . The mapping θ  is an extension of the map φ  i.e |Sθ φ=   i.e 

( )0X AE∈ . Hence, X is the Dugundji space.  

The converse statement is obvious, as each ( )0X AE∈  space is a 0-soft image of some power 

Nτ . (zero soft maps are 0-invertible). Theorem 2 is proved. 
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