DOI 10.12851/EESJ201606C01ART03

Nagi I. Yagubov, ScD (Chemistry), associate professor;

Imir I. Aliyev, ScD (Doctor in Chemistry), professor;

Oktaj A. Aliyev, ScD (Chemistry), associate professor;

Gumaj A. Gusejnova, ScD (Chemistry), associate professor, Baku State University

Investigation in GaSe-CaGa4Se7 System

Key words: solid solution, semiconductor, microhardness, luminescence, syngony, radiograph, cut.

Annotation: GaSe-CaGa4Se7 system investigation was carried out by complex methods of physical -chemical analysis (DTA, XRD, ISA) as well as by measuring the microhardness and determining the density of alloys. There also has been conducted a study of the GaSe-CaGa4Se7 cut of the Ca-Ga-Se ternary system. The state diagrams of the system were constructed and it was determined that GaSe-CaGa4Se7 system partially non-quasi-binary and characterized by eutectic and peritectic transformations. According to the GaSe-CaGa4Se7 cut, there was established formation of 1.5 mol% CaGa4Se7 solid solution based on GaSe compound. It was found that CaGa4Se7 compound crystallizes in the rhombic syngony with lattice parameters: a = 15.12; b = 9.66; c = 5.26; Z = 3, space group Pmn2, \Box pik = 5.25 g / sm3, \Box rentg = 5.30 g / sm3.

Настоящая работа относится к области синтеза сложных полупроводниковых соединений, разработке научных основ синтеза соединений и твердых растворов с важными свойствами, являющимися важнейшими направлениями развития полупроводниковой промышленности.

Известно, что халькогениды II группы проявляют люминесцентные свойства (1), а халькогениды III А подгруппы обладают фоточувствительными свойствами. Таким образом при взаимодействии халькогенидов второй группы с халькогенидами III А подгруппы, образуются тройные соединения и твердые растворы несущие в себе свойства исходных бинарных соединений, а кроме того, обладающие дополнительными функциональными свойствами. В связи с этим, полученные соединения нашли применение в оптоэлектронике, фотоприемниках, фоторезисторах, лазерах и люминофорах.

Экспериментальная часть.

Было синтезировано 15 образцов сплавов системы GaSe-CaGa₄Se₇. Синтез проводился в двойных кварцевых ампулах в однотемпературной печи. Сначала, при взаимодействии CaSe с Ga₂Se₃, было получено соединение CaGa₄Se₇. После получения CaGa₄Se₇ были синтезированы сплавы GaSe-CaGa₄Se₇ при температуре1280-1400 К в течение 4-6 часов. По окончанию синтеза, провели гомогенизирующий отжиг при температуре 900 К в течение 400 часов. Индивидуальность тройных соединений и твердых растворов исследовали методами физико-химического анализа (дифференциально-термический анализ (ДТА), рентгенофазовый (РФА), микроструктурный (МСА)), химического анализа, а также определением плотности и измерением микротвердости. Термограммы записывали на низкочастотном терморегистраторе Термоскан-2, со скоростью нагревания 10 град/мин. Дифрактограммы снимали на установке Д-2 PHASER (CuK_αизлучение). Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных в результате изучения микротвердости каждой фазы. Микроструктуру сплавов изучали на микроскопе МИМ-8. Шлифы сплавов травили смесью HNO₃ (HCl разб.): H₂O₂=1:1, а сплавы на основе GaSe -20% HCl. Плотность определяли пикнометрическим методом, в качестве рабочей жидкости использовали гептан. Полученный сплав находится в компактном состоянии и имеет темно-серый цвет. В соответствии с результатами физико-химического анализа, построена диаграмма состояния GaSe-CaGa₄Se₇. Соединения GaSe-CaGa₄Se₇ являются перитектическими соединениями, поэтому сплавы на основе соединений CaGa₄Se₇ были получены при 20 градусах ниже перитектических температур в течение 300 часов. Для повторной гомогенизации сплавы системы CaGa₄Se₇ подверглись термической обработке при температуре 875 К в течение 300 часов. Дифференциально-термический анализ расплавов показывает, что на их термограмме возникает два эндотермических эффекта, а в области 0-50 моль% GaSe образуется три эндотермических эффекта. Микроструктурный анализ сплавов показал, что на основании GaSe образуется 1,5 моль % CaGa₄Se₇ твердого раствора. На основе соединения CaGa₄Se₇ область твердых растворов практически образуется. Для подтверждения результатов не дифференциально-термического И микроструктурного анализа проведен рентгенофазовый анализ сплавов системы 30-80 моль % CaGa4Se7. На дифрактограммах (рис.1) наблюдаются смешанные спектрные линии исходных компонентов. Это показывает, что сплавы системы двухфазны. Комплексными методами физикохимического анализа (ДТА, РФА, МСА, а также путем измерения микротвердости и определения плотности) построена диаграмма состояний GaSe-CaGa₄Se₇ (рис.2). Диаграмма состояния системы GaSe-CaGa₄Se₇ частично неквазибинарная. В области 0-30 моль% CaGa₄Se₇ ниже линии ликвидуса образуется зародыш кристаллов GaSe, а потом образуется дувухфазоввые поля (Ж+GaSe). При повторном осаждении ниже линии ликвидуса образуется трехфазовое поле (Ж+GaSe+CaSe) и (Ж+CaGa₄Se₇+CaSe). При определении микротвердости сплавов в системе образуется две разные микротвердости, данные о которых даны в таблице 1. Были также проведены электрофизические и фотоэлектрические измерения для соединений CaGa₄Se₇ при температуре 200-670 и 77-300 К соответственно. Измерение электропроводности соединения CaGa₄Se₇ проводилось в температурном интервале 200-670 К (3). Известно, полупроводников значение что V примесных электропроводности прямо пропорционально произведению подвижности носителей тока и их концентрации п.

рис.1: Дифрактограммы расплавов системы GaSe – CaGa₄Se₇ 1- GaSe , 2- 30, 3- 80, 4-100 моль % CaGa₄Se₇

рис.2: Диаграмма состояния системы GaSe - CaGa4Se7

	MCTOA	цами для, микроп	зердости и пл	ornoern.	
Состав, моль%				Микротвердость сплавов, МПа	
GaSe	CuZn2InT CaGa4Se7	_ Терм. нагрев. эффекты, °С	Плотность, г/см ³	α	β
				Р=0,20 Н	P=0,05 H
100	0,0	960	5,03	300	-
97	3,0	900,950	5,04	330	-
95	5,0	880,945	5,05	350	-
90	10	815,940	5,05	350	-
80	20	815,840,900	5,07	350	-
70	30	815,850	5,08	350	-
65	35	815,890	5,10	-	-
60	40	815,910	5,10	-	2680
50	50	815,870,950	5,13	-	2680
40	60	815,900,990	5,15	-	2680
30	70	815,930,1020	5,18	-	2680
20	80	815,960,1050	9,20	-	2680
10	90	815,980,1060	5,22	-	2680
0,0	100	1000,1080	5,25	-	2600

Следовательно, температурная зависимость электропроводности содержит информацию о температурной зависимости подвижности и концентрации носителей тока. Были

Таблица 1. Результаты измерения сплавов системы GaSe-CaGa4Se7

методами ДТА, микротвердости и плотности.

Рис.3: Температурная зависимость электропроводности соединения CaGa4Se7

Одновременно была изучена зависимость коэфффициента поглощения α (h γ) от температуры соединения CaGa₄Se₇ в интервале от 77 до 300 К (рис.4). Из приведенных спектров следует, что при α >1 ом⁻¹, наблюдается более слабая зависимость от энергии, этот участок кривой α (h γ) обусловлен прямыми разрешенными переходами.

Рис.4.Зависимость коэфффициента поглощения α (hγ) от температуры соединения CaGa₄Se₇ в интервале от 77 до 300 К.

Ширина запрещенной зоны, вычисленная на основе этих спектров, равна 1,98 эВ. Опытным путем было доказано, что соединение CaGa₄Se₇ проявляет люминесцентные свойства (4). Как выяснилось, соединения и твердые растворы обладают более высокой фоточувствительностью (2,4,5) и перспективны в качестве фоторегистров, используемых в схемах автоматического контроля и измерительной технике.

References:

- 1. Markovskij LYa. The phosphors. Moscow-Leningrad, 1996; 258.
- 2. Guliyev TN, Rustamov PG, Yagubov NI, Safarov V. Photosensitive material: №1484213, 1989.
- 3. Guo C, Tang O, Huang D, Zhang C, Su Q. Influence of co-doping different rare earth ions on CaGa2S4: Eu2+, RE3+ (RE=Ln) phosphors: Journal of Physics and Chemistry of solids, 2007, v. 68; 217-223.
- 4. Yakubov NI, Guliyev TN, Rustamov PG, Niftiyev GM. Photosensitive material: №1493033, 1987.
- 5. Yaqubov NI, Aliyev II, Veliyeva CA, Ali Riza Kul. Liquids Surface Projection for the CaTe-In-Te Quasi-ternary system: Journal of Allows and Compouns, 2015; 319-324.