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Annotataion: The proposed theory is based on a systematic principle in accordance with 
which the status of electrical quantity is assigned to those quantities only that may be 
expressed by partial derivatives of electric field energy with respect to charge, spatial 
coordinate and speed of charge carriers. The systematic character of the proposed quantities 
and strict mathematical interrelation between them forms a new theoretical picture of 
physics of electrical phenomena that is able to provide explanations even for such 
phenomena that had rendered electromagnetic theory helpless. 
 

Introduction 

Nowadays, the science that studies electrical phenomena is in a state of depression. 

All the worthwhile results lying at its basis were obtained a hundred or more years ago, at 

the first stage of theory development. That was the time of discovery of experimentally 

reproduced stable phenomena electrical by nature, followed by their description in the form 

of a particular mathematical dependence. It resulted in lots of empirical laws, i.e. the Biot-

Savart law, Ampere's law, Faraday’s law, the law of total current etc., constituting the core 

of modern theory of electricity. At this stage, the science acquired a seriously prescriptive 

character, answering, for the most part, the how-questions. As for the why-questions, they 

remained unanswered. Instead of detecting and analyzing the underlying physical causes, 

the science at this stage became engaged in inventing formal constructions that were able, 

to some extent, generalize the empirical laws. 

Maxwell’s equations are among the many examples; they were used quite 

successfully in a number of engineering fields, nevertheless failing to provide adequate 

description of such problems as, for instance, atomic stability, energy transformation in an 

electromagnetic wave, force interaction of moving charge carriers. These and a number of 

other problems exposed essential incompleteness of the theory, which is a major restriction 

to its deductive potential. 



One more example demonstrating formal construction of the theory of electricity is 

the Lorentz transformation that had been borrowed from pure mathematics. In absence of 

any physical grounds whatsoever, the Lorentz transformations were applied to the 

description of electromagnetic phenomena and became a formal basis for prediction of a 

multitude of alleged mystical properties of material objects. Degeneration of physics into a 

branch of mathematics employing the terminology of physics is a path that, instead of 

adequate description of real physical phenomena, leads to the thought that the behavior of 

material objects must obey some formal constructs. For example, the atom is considered to 

be stable not because electrons are kept from falling on the nucleus by some physical cause, 

but because this is prevented by the laws of quantum mechanics and the indeterminacy 

principle. Anyway, this is what is written by R. Feynman (3, p.10). 

A great number of initially empirical laws, as well as the absence of a uniform, 

physically grounded treatment of their origin, is the major shortcoming of electromagnetic 

theory holding back its further development. As a result, various modifications of the theory 

emerged. Some of them lead beyond Maxwell’s equations, others alter the properties of the 

vacuum, endowing it with certain specific features. These problems are dealt with in works 

(1, 2, 7, 8, 9). The most detailed elaboration of a revised electromagnetic field theory is 

found in book (8), which is based on the concept of an electrically polarized state of the 

vacuum that gives rise to a local electric charge and, correspondingly, a nonzero electric field 

divergence. In articles (15, 20) and in a number of other works the physical properties of a 

hydrogen  atom  are  also  explained  by  polarization  of  the  vacuum,  but  as  opposed  to  (8),  

polarization is not considered to be a constant attribute of the vacuum, but arises only under 

the influence of a strong magnetic field.  

Nevertheless, such modifications do not change the theory’s prescriptive character. 

They just fill in the gaps that exist in the theory without affecting its foundation. The general 

way for development of the theory of electricity lies in making its propositions explanatory, 

not prescriptive. This explanatory character may only be achieved on condition that lots of 

the existing empirical laws and formal constructions are presented as the manifestation of 

their common physical nature under certain conditions. Only in this case, guided by physical, 

not formal content, one may get an informative answer to the question “Why?” without the 

risk of getting an answer in the form of a reference to one of the laws that were formulated 

by the founders a hundred or more years ago. It is indispensable that the theory’s 



foundation is represented by a systematically arranged complex of basic concepts that 

constitute the underlying carrier set of the theory, along with a great number of quite simple 

relations between these concepts – signature of the theory. However, the existing set of 

physical quantities that characterize the electric field is quite far from any consistency. To a 

considerable degree, it sprang up from a great many experiments, and naturally, it reflects 

experimental techniques of each of them, not the specific character of the electric field as 

the object of research. The desired systematic character of the set of basic concepts may 

only be achieved by such a method of electric field parameterization that is based on a 

single, but the most general physical characteristic inherent in the electric field – its energy. 

The term “parameterization” here denotes a process of determining (designing) the 

quantities that reflect the essential properties of the electric field. 

The purpose of this work is to develop the fundamentals of a Systematic Theory of 

Electrical Phenomena (STEP) that would fully reflect their common physical nature. This 

theory is an alternative to the set of empirical laws along with their formal mathematical 

generalizations that make up the foundation for the modern doctrine of electrical 

phenomena.  

Verification of the proposed theory has been made by way of demonstrating the 

compliance of its predicted results with those entailed by the empirical laws constituting the 

basis of electromagnetism. 

Relevance of the theory and its potential were demonstrated by its ability to solve a 

number of problems which the classical theory of electricity was unable to tackle. 

The first section of the study sets forth the basic points that serve as the 

foundations of the theory; in particular, it provides a more refined concept of the electric 

field, introduces the concept of an equivalent source of the electric field, and describes the 

method of parameterization that permits to determine in a systematic way the physical 

quantities characterizing the properties of the electric field. 

The basic physical quantities as the manifestation of the electric field energy are 

determined in the second, third and fourth sections of the work by respective use of a 

potential or kinetic component and total energy of the field.  

The fifth section of the work is aimed at providing theoretical grounding for such 

empirical laws of electromagnetism as Ampere's law, Faraday’s law, the Lorentz force. These 



laws cease to be a generalization of experimental data and acquire the status of analytical 

consequences of the theory, thus confirming the validity of STEP. 

The sixth section presents the solutions of problems unsolvable in the classical 

theory. An opinion has been refuted of the violation of Newton’s third law which is alleged 

to be characteristic of interactions of charged bodies. A condition has been obtained under 

which emission occurs in case of accelerated motion of charge carrier. The solution is given 

for “electromagnetic paradox” that is connected with the opinion of its insolvability without 

resorting to the methods of relativistic electrodynamics.  

1 Method of Electric Field Parameterization 

1.1 More accurate definition of the term “electric field” 

Any theory must be based on well-defined concepts and unambiguous 

interpretation of the terms employed. Unfortunately, the theory of electromagnetism is not 

remarkable for its stringency. It can be exemplified by the term “field”. The term is used by 

mathematicians to denote an algebraic structure that is a commutative ring which contains a 

multiplicative inverse for every nonzero element. In this interpretation, the use of the term 

is quite reasonable as, for instance, in a phrase “vector field”. Thus it is asserted that there 

exists an algebra whose carrier set is represented by a multitude of vectors while the 

signature of algebra consists of operations with predetermined properties. The field as an 

algebraic structure is a product of human mental efforts and therefore it presents an ideal 

object (in a philosophical sense). Such field, being a mental construction, is unable to make 

any impact on objects of material world. 

The term “field” acquires quite a different meaning in a phrase “electric field”. Here 

the field is a material substance existing regardless of man and independently. This field, as 

opposed to a mathematical field, is capable of forceful influence on the objects of material 

world such as charged and even uncharged objects. 

Incomprehension of the homonymous character of the term “field” leads to quite 

absurd statements that can be found not only in articles but also in undergraduate 

textbooks. The following statement is an example of it: “Let us call this vector function an 

electric field” (16, p. 33) whence it follows that mental constructions (vector functions) are 

capable of influencing various material bodies in some mystic way. Another up-to-date 

textbook (4, p. 53) reads as follows: “…if there are no electric charges in a cavity, its electric 

field equals zero”. Obviously, the author considers the electric field to be some 



mathematical quantity, as material substances are usually spoken of in terms of “presence” 

or “absence”. Water may be absent in a desert, but it cannot be equal to zero. 

One more methodological mistake of the electromagnetic theory can be 

demonstrated by a statement (4, p. 21) that if the field intensity inside a uniformly charged 

surface equals zero, the electric field within this space is absent. Hence a rhetorical question: 

what was the author’s rationale when on the basis of potential gradient being equal to zero 

the conclusion is made that the field is inexistent as a physical phenomenon? On a mountain 

plateau,  gravitational  potential  gradient  equals  zero,  but  it  does  not  at  all  mean  that  the  

mountain itself has disappeared. In conclusions of this kind no difference is made between 

the concepts of “existing” and “manifesting in the form of forceful influence upon foreign 

charged bodies.” 

Further in this work the electric field will always be taken to mean a material 

continuum that is indissolubly related to charge carriers and is capable of acting by force on 

charged bodies, and in so doing obeys the laws of mechanics. 

Regarding the last of the above listed field properties it should be noted that an 

opinion became firmly established in contemporary physics (10, pp. 133-136; 12, p. 12) on 

inapplicability in principle of the laws of classical mechanics to electrical phenomena. Failure 

to apply mechanics for solving a particular problem of whether imaginary ether can be the 

carrier of electromagnetic oscillations could have initiated the search for some other carrier 

substance, but instead a misconception was established that mechanics as such is unfit for 

application to electrical phenomena. To refute this misconception, the study (18) shows that 

electrodynamics may well be constructed as the mechanics of the electric field, which allows 

obtaining results of a much more general character as compared to Maxwell’s equations. 

 
  



1.2 Equivalent sources of the electric field 

It is universally recognized that if charge Q of a point field source is spread evenly 

over the surface of a sphere, with the centre at the place of this source location, then the 

field force exerted on test particles located at the points in space outside the sphere will not 

change. The charged sphere and the point field source are in this sense indistinguishable, 

and therefore interchangeable, i.e. equivalent. Hence it follows that all spherical charge 

carriers with radius R > 0 and the centre at the point of field source location will be 

equivalent to some point field source if their surface charge density σ satisfies the condition 

(1.1), 

σ = ܳ 4πܴଶ,                                                        (1.1)⁄  

and observation points are at a distance of r ≥ R. 

In case of linear charge carriers, equivalent carriers are all cylinders of revolution 

coaxial with a linear charge carrier with linear density λ, whose surface charge density is 

σ = λ 2πܴ                                                           (1.2)⁄  

Among the set equivalent sources (having the same charge and the same force 

action upon charged bodies), one source may be singled out whose surface passes through 

the observation point. Therefore, the quantities that reflect the properties of the surface of 

some equivalent source may be considered as the quantities characterizing the field 

properties for all other equivalent sources with a smaller radius. Thus the system of 

parameters characterizing an electric field at distance R from a point field source may be 

constructed  as  a  set  of  quantities  reflecting  the  properties  of  the  surface  of  some  virtual  

equivalent source with radius R. 

1.3 Energy of the electric field 

Transfer of like charge carriers from one formerly uncharged body to another 

results in appearance of an electric field in the vicinity of these bodies. Separation of charge 

carriers requires work, which is accumulated as energy Wes of the created electrostatic field. 

The store of energy in this field depends on distance R between the bodies and the amount 

of charge Q accumulated on the bodies in the process of charge separation, so the energy, 

all other things being equal, may be considered as the function of two arguments, 

௘ܹ௦(ܳ,ܴ). 



In case when a charged body is moving relative to the observer, the electric field is 

bound  to  move  along  with  it  at  a  certain  speed  v. As every moving material object, the 

electric field in this case acquires kinetic energy whose amount is now the function of three 

arguments, ௘ܹ௞(ܳ,ܴ,ݒ). Following Maxwell (11, p. 204) we will call this energy 

electrokinetic. The carrier of this energy is the electrokinetic field created in the vicinity of a 

charge carrier in course of its motion. Just like the electrostatic field, it is capable of force 

action on other bodies, thus presenting a material substance. 

1.4 Method of parameterization 

In the author’s opinion, the only way to create a system of physical quantities that 

are capable of reflecting the properties of the electric field (just like any other continuum, 

i.e. gravitational field), which would reproduce force interaction of charged bodies is to 

interpret each of the derivatives of functions ௘ܹ௦(ܳ,ܴ) and ௘ܹ௞(ܳ,ܴ,  with respect to one (ݐ

or several arguments as certain physical quantities of such system. 

All that follows is an illustration of the suggested procedure of parameterization of 

the electric field and the application of its results. 

2 Main parameters of the electrostatic field 

2.1 Electrostatic field of a point charge carrier 

2.1.1 Energy of the electrostatic field 

Using Coulomb’s law, let us determine the energy stored in the electric field of a 

spherical capacitor during its charging. Let the charging process be realized by reiterated 

transfer of elementary charge Δqс of the capacitor’s outer sphere to the inner, initially 

discharged, sphere until this sphere acquires charge Q. 

While at its first step the process requires no work, ΔA1 = 0, at the second step for 

displacement of charge carriers Δq to the distance Δr work  ΔA2 is required, which is 

determined by the relation 

Δܣଶ =
ΔݍΔݍ
4πε଴ݎଶ

Δ(2.1)                                                  . ݎ 

At the next step, transferring the next portion of charge will require work ΔA3, 

Δܣଷ =
(Δݍ + Δݍ)Δݍ
4πε଴ݎଶ

Δ(2.2)                                           .ݎ 

At the n-step there is increment work ΔAn, 



Δܣ୬ =
(n − 1)Δݍ
4πε଴ݎଶ

ΔݍΔݎ =
ݍ

4πε଴ݎଶ
ΔݍΔ(2.3)                         . ݎ 

Energy Wes stored  in  the  electrostatic  field  of  the  capacitor  is  equal  to  work  

delivered  during  its  charging,  taken  with  the  opposite  sign.  Therefore,  integrating  the  last  

expression for distance r going from the outer sphere radius R0 to the inner sphere radius R, 

and for charge from zero to Q, we will arrive at the energy in question,  

ܹୣ ୱ = −න න
ݍ

4πε଴ݎଶ
ோ

ோబ

ொ

଴
ݍ݀ݎ݀ =

ܳଶ

8πε଴
൬
1
ܴ −

1
ܴ଴
൰                 (2.4) 

2.1.2 Potential 

Partial derivative ߲ ௘ܹ௦ ߲ܳ⁄  accounts for energy increase with unit increment of field 

source charge, i.e. a quantity that equals the work that can be potentially delivered by the 

field as its charge is decremented by one. It is natural to call such physical quantity 

electrostatic potential φes of the equivalent source, 

φ௘௦ ≝
߲ ௘ܹ௦(ܳ,ܴ)

߲ܳ =
ܳ

4πε଴
൬
1
ܴ −

1
ܴ଴
൰ .                                (2.5) 

It is notable that with such definition of the potential there is no need to resort to the 

concept of “test charge”. 

2.1.3 Field source capacitance 

Second derivative of energy Wes with respect to charge Q does not depend on the 

charge  itself,  therefore  it  is  a  constructive  characteristic  of  the  electric  field  source.  In  an  

attempt to stick to the presently accepted terminology, we will call the concerned derivative 

the inverse capacitance of the field source, 

ଵିܥ ≝
߲ଶ ௘ܹ௦

߲ܳଶ =
߲φ௘௦

߲ܳ =
1

4πε଴
൬
1
ܴ −

1
ܴ଴
൰ .                              (2.6) 

From relation (2.6) considering (2.5) an expression may be easily derived that connects the 

potential with the amount of charge, 

φ௘௦ =  ଵ,                                                    (2.7)ିܥܳ

which shows that in the classical theory of electricity, the physical quantity characterizing 

the proportionality of potential and charge was accepted to be the quantity reciprocal to the 

second partial derivative of energy with respect to charge, not the derivative itself, which 

would have been logical. 

2.1.4 Field intensity 



Potential gradient, or mixed derivative of energy with respect to charge and space 

coordinates, determines the electric field vector: 

۳௘௦ ≝ ቆ܌܉ܚ܏−
߲ ௘ܹ௦(ܳ,ܴ)

߲ܳ ቇ = φ௘௦܌܉ܚ܏− =
ܳ

4πε଴ܴଶ
૚௥ .        (2.8) 

where 1r is the unit vector of the radial axis of a spherical coordinate system. 

2.1.5 Flux of pressure force 

The derivative of energy with respect to the equivalent source radius, taken with 

the opposite sign, is a scalar quantity that characterizes total field force exerted on the 

surface of this source. 

ܲ ≝ −
߲ ௘ܹ௦

߲ܴ =
ܳଶ

8πε଴ܴଶ
 .                                         (2.9) 

Due to symmetry, this effect should be evenly distributed over the surface, 

therefore it is logical to talk about flux P of pressure force p, 

ܘ ≝ −
߲ܲ
ݏ߲ ૚୬ =

ܳଶ

32πଶε଴ܴସ
૚୬,                                  (2.10) 

where 1n is  the  unit  vector  of  outer  normal  to  surface  element  ds in a considered surface 

point. 

 

2.1.6 Field energy density 

Since  the  electric  field  is  the  carrier  of  energy  Wes, then its every point must be 

characterized by energy density wes. These two quantities, Wes and wes, are connected by the 

apparent relation: 

௘ܹ௦ = න ௘௦ܸ݀ݓ
௏

= න ௘௦ 4πݓ
ோబ

ோ
 (2.11)                               ,ݎ݀ ଶݎ

where r is the reference radius, ܴ ≤ ݎ ≤  ܴ଴. 

Interchanging the limits of integration, we will find the derivative of function Wes 

with respect to the upper limit, 

߲ ௘ܹ௦

߲ܴ =  ଶ .                                               (2.12)ݎߨ௘௦ 4ݓ −

Let us assume r = R in this expression and compare formulas (2.12) and (2.09). As a 

result of comparison, we arrive at a relation that determines the density of electrostatic field 

energy on the surface of the equivalent source, 



௘௦ݓ =
ܳଶ

32πଶε଴ܴସ
.                                                  (2.13) 

Energy density (2.13) has turned out to be equal to the modulus of pressure force 

(2.10). 

If energy density is expressed in terms of electrostatic field intensity (2.8), we will 

obtain 

௘௦ݓ =
1
2 ε଴ܧ௘௦

ଶ .                                                  (2.14) 

In the classical theory of electricity (19, p. 147), relation (2.14) is called one of the 

basic postulates of a macroscopic theory of electricity. Here, instead of being postulated, this 

relation is being formally derived, and it follows from the derivation that the said relation 

accounts for energy density only at the points that constitute the surface of an equivalent 

source. 

Let us restrict electrostatic field parameterization for point charge carrier by 

introducing the quantities listed above and move on to determining the analogous quantities 

representing the properties of the electric field of an extended linear field source. 

2.2 Electrostatic field of a linear charge carrier 

2.2.1 Field energy 

Let us assume there is a cylindrical capacitor whose outer plate radius equals R0 and 

inner plate radius is R. The outer plate potential will be considered to equal zero. Using 

Coulomb’s law, it is easy to demonstrate that in process of charge separation an electric field 

is created between the capacitor’s plates, and each of its unit lengths has energy Wes (λ,R), 

௘ܹ௦ =
λଶ

4πε଴
ln
ܴ଴
ܴ  ,                                               (2.15) 

where λ is linear charge density. 

2.2.2 Potential 

Let us define the potential as a quantity equal to work that the field is potentially 

capable of exerting when its linear charge density changes by one. In accordance with this 

definition, the formal expression of the potential is a partial derivative of energy Wes (2.15) 

with respect to linear charge density λ, 

φ௘௦ ≝
߲ ௘ܹ௦

߲λ =
λ

2πε଴
ln
ܴ଴
ܴ .                                         (2.16) 



2.2.3 Capacitance 

The  second  derivative  of  energy  (2.15)  with  respect  to  charge  density  λ 

characterizes the capacitor’s geometry and represents inverse capacitance of a unit length 

capacitor, 

ଵିܥ ≝
߲ଶ ௘ܹ௦

߲λଶ =
1

2πε଴
ln
ܴ଴
ܴ  .                                     (2.17) 

 

2.2.4 Field intensity 

Let us define the electric field vector as a characteristic of spatial distribution of the 

potential reflected by gradient vector taken with the opposite sign,  

۳௘௦ ≝ φ௘௦܌܉ܚ܏− =
λ

2πε଴ܴ
૚௥  .                             (2.18) 

2.2.5 Flux of pressure force  

Partial derivative with respect to radius R taken with the opposite sign is flux P of 

pressure force through the surface of capacitor’s inner plate, 

ܲ ≝ −
߲ ௘ܹ௦

߲ܴ =
λଶ

4πε଴ܴ
 .                                         (2.19) 

Pressure force  p will be found by differentiating flux P with respect to the plate 

area, 

ܘ ≝ −
߲ܲ
ݏ߲ ૚୬ =

λଶ

8πଶε଴ܴଶ
૚୬.                                  (2.20) 

2.2.6 Field energy density 

Energy Wes stored in the capacitor’s electric field and density wes of this energy are 

connected by relation (2.21): 

௘ܹ௦ = න ௘௦ܸ݀ݓ
௏

= න ௘௦ 2πݓ
ோబ

ோ
 (2.21)                        ,ݎ݀ ݎ

where r is the reference radius, ܴ ≤ ݎ ≤  ܴ଴. 

Interchanging the limits of integration, we will find the derivative of function Wes 

with respect to the upper limit, 

߲ ௘ܹ௦

߲ܴ =  (2.22)                                             . ݎ௘௦ 2πݓ −



Let us assume r = R in this expression and compare formulas (2.22) and (2.19). As a 

result  of  comparison,  we  arrive  at  a  relation  that  determines  the  density  of  electric  field  

energy on the surface of the equivalent source, 

௘௦ݓ =
λଶ

8πଶε଴ܴଶ
.                                                     (2.23) 

Energy density, as is the case with a point field source, is equal to the modulus of 

pressure force (2.20). If density (2.23) is expressed in terms of electric field intensity (2.18), 

the  classical  result  will  be  obtained,  which  as  was  noted  in  point  2.1.6,  is  a  postulate  in  

contemporary theory. 

Restricting the electrostatic field parameterization by the quantities introduced, let 

us move on to parameterization of the electric field of moving charge carriers. 

3 Basic parameters of the electrokinetic field 

3.1 Electrokinetic field of a point charge carrier 

3.1.1 Electrokinetic energy of the field 

Assume there is a spherical charge carrier located at an infinitely large distance 

from all other charge carriers. The electric field energy of such charge carrier may be found 

from formula (2.4) if we put R0 → ∞: 

௘ܹ௦ =
ܳଶ

8πε଴ܴ
 .                                                    (3.1) 

In accordance with the Einstein relation, the electric field mass m of  this  charge  

carrier may be expressed by the relation, 

݉ = ௘ܹ௦

сଶ =
ܳଶ

8πε଴ܿଶܴ
 .                                            (3.2) 

Suppose  that  a  charge  carrier  is  moving  at  a  speed  of  v(t) along the z-axis of a 

cylindrical coordinate system (r, θ, z). The electric field is always inseparably connected with 

the carrier and therefore will move along with it. The lag of field motion with respect to the 

carrier’s motion will be disregarded.  

Let us define the electrokinetic energy of the field by means of a formula that is 

well-known from mechanics, 

௘ܹ௞ =
1
ݒ2݉

ଶ =
1
2 ௘ܹ௦

ଶݒ

ܿଶ = 
ܳଶ

16πε଴ܴ
ଶݒ

ܿଶ .                          (3.3) 
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Unlike in electrostatics, distance R is changing now in relation to time and speed ܴ =

൬ݎଶ + ቀݖ − ∫ ௧(ݐ)ݒ
଴ dݐቁ

ଶ
൰
ଵ ଶ⁄

. Figure 1 is a diagram explaining this relation. The subscript “es” 

when indicating quantities, i.e. Wes in formula (3.3) will be used to denote the quantities that 

would characterize the field when the charge carrier is located at some fixed distance R = 

const from the observation point in a static condition. 

 

 

 

 

 

 

 

3.1.2 Potential 

Let us give a name of the electrokinetic potential to a quantity expressed by the 

derivative of electrokinetic energy Wek with respect to charge, 

φ௘௞ ≝
߲ ௘ܹ௞

߲ܳ =
ܳ

8πε଴ܴ
ଶݒ

ܿଶ =
1
2φ௘௦

ଶݒ

ܿଶ  .                            (3.4) 

This quantity equals the change in electrokinetic energy per unit charge increment 

of the carrier that has created the field. 

3.1.3 Pulse 

Let us define the electrokinetic field pulse as a physical quantity reflecting a change 

in the field energy referenced to the unit increment of its speed. Mathematical expression of 

this quantity is a partial derivative of field energy with respect to speed, 

۵ ≝
∂ эܹ௞

ܞ૚ ݒ∂ =
ܳଶܞ

8πε଴ܴܿଶ
=  (3.5)                                 .ܞ݉

3.1.4 Vector potential 

Vector potential А characterizes the change in an electrokinetic field pulse with the 

change  in  the  amount  of  charge  or,  which  is  the  same,  the  change  in  the  electrokinetic  

potential with the change in the speed. For its calculation, a mixed partial derivative must be 

taken of energy with respect to charge and speed, 
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ۯ ≝
∂۵
∂ܳ =

߲φ௘௞

= ݒ߲
∂ଶ ௘ܹ௞

∂ܳ ݒ∂ ૚୴ =
ܞܳ

4πε଴ܴܿଶ
 .                            (3.6) 

The latter expression clearly demonstrates the physical significance of the vector 

potential  as  electrokinetic  energy  per  unit  charge  of  the  carrier  that  is  moving  at  a  unit  

speed. Contrary to this definition, electromagnetic theory considers the vector potential as a 

mathematical quantity only, whose physical significance merits neither explanation nor 

discussion. 

3.1.5 Intensity  

Force function of the electrokinetic field will be called intensity. It must depend 

both on a spatial characteristic of the field, which is formally expressed by the gradient of 

the electrokinetic potential, and on the character of field motion, which is determined by a 

change in the vector potential. For that reason, the electrokinetic field intensity will be 

defined as a quantity equal to the sum, taken with the opposite sign, of the electrokinetic 

potential gradient and the derivative of the vector potential with respect to time, 

۳௘௞ ≝ −൬܌܉ܚ܏φ௘௞ +
ۯ݀
ݐ݀ ൰ =

1
࢘.௘௦ܧ2

ଶݒ

ܿଶ ૚௥ −
1
௘௦.௭ܧ2

ଶݒ

ܿଶ ૚௭ −
φ௘௦ܽ
ܿଶ ૚௭  ,         (3.7) 

where ܧ௘௦.௥ ௦.௭ୣܧ ,  are the projections of the electrostatic field vector on the respective 

coordinate axes. 

 

A qualitative electrokinetic field pattern in a particular case of motion 

corresponding to uniform rectilinear motion is shown in Figure 2 where the following 

notations are introduced: ܧ௘௞ .௥ = ௘௦.௥ܧ ଶݒ (2ܿଶ)⁄ ௘௞ܧ , .௭ = ௘௦.௭ܧ− ଶݒ (2ܿଶ)⁄ . 

 

 

 

 

 

 

 

 

 

 



 

 

3.2 Electrokinetic field of a linear charge carrier 

3.2.1 Electrokinetic field energy 

The electrostatic field of a linear charge carrier’s unit length has energy Wes, 

௘ܹ௦ =
λଶ

4πε଴
ln
ܴ଴
ܴ                                               (3.8) 

where R0 is the radius of an equivalent source whose surface potential is taken to equal zero. 

In terms of the Einstein relation, the mass of this field fragment may be calculated from 

formula (3.9), 

݉ = ௘ܹ௦

сଶ =
λଶ

4πε଴сଶ
ln
ܴ଴
ܴ .                                          (3.9) 

In case of a carrier’s longitudinal motion with velocity v=vz1z,  the electric field as a 

material object comes to possess electrokinetic energy Wek, 

௘ܹ௞ ≝
1
ݒ2݉

ଶ =
1
2 ௘ܹ௦

ଶݒ

ܿଶ =
λଶ

8πε଴
ଶݒ

ܿଶ ln
ܴ଴
ܴ  .                     (3.10) 

Since we are considering a linear charge carrier that is moving in a longitudinal 

direction, distance R now depends only on radial coordinate r and does not depend on time.  

3.2.2 Potential 

Partial derivative of energy Wek with respect to charge density λ reflects the 

electrokinetic field energy per unit charge density of a rod, i.e. determines the potential of 

the electrokinetic field φek, 

φ௘௞ ≝
߲ ௘ܹ௞

߲λ =
1
2φ௘௦

ଶݒ

ܿଶ =
λ

4πε଴
ଶݒ

ܿଶ ln
ܴ଴
ܴ  .                            (3.11) 

3.2.3 Electric current 

Longitudinal motion of a linear charge carrier generates electric current. Let us 

define it as a quantity equal to the product of linear density λ of positive charge and speed v 

of the carrier’s motion, 

݅ ≝ λ(3.12)                                                          . ݒ 

Such definition does not contradict to the traditional one, ݅ = ݀ܳ ⁄ݐ݀ ,  indeed,  as,  

λ = ݀ܳ ݈݀⁄ , then 



݅ = λݒ =
݀ܳ
݈݀

݈݀
ݐ݀ =

݀ܳ
ݐ݀ ,                                           (3.13) 

instead, it specifies the scope of concept of electric current, excluding convection current 

from it. Besides, this definition has a definite physical meaning that coincides with the 

intuitive comprehension of electric current. 

3.2.4 Field pulse 

Partial derivative of energy Wek with respect to speed v represents a pulse of a 

moving electric field that is created by a unit-length carrier with charge density λ, 

۵ ≝
߲ ௘ܹ௞

ݒ߲ ૚ܞ = ܞ݉ =
λଶܞ

4πε଴ܿଶ
ln
ܴ଴
ܴ  .                             (3.14) 

3.2.5 Inductance 

The inductance of a moving linear carrier’s unit of length is expressed by the mixed 

fourth derivative, 

ܮ ≝
߲ସ ௘ܹ௞

߲λଶ߲ݒଶ =
1

2πε଴ܿଶ
ln
ܴ଴
ܴ  .                                (3.15) 

3.2.6 Vector potential 

The mixed derivative of energy Wek with respect to speed v and linear charge 

density λ characterizes the change in the field pulse with a unit change in charge density and 

speed. Let us call this quantity a vector potential A, 

ۯ ≝
߲ଶ ௘ܹ௞

߲λ߲ݒ ૚ܞ =
λݒ

2πε଴ܿଶ
ln
ܴ଴
ܴ ૚ܞ = 

݅
2πε଴ܿଶ

ln
ܴ଴
ܴ ૚ܞ =  (3.16)          .ܞ૚ܮ݅

3.2.7 Intensity 

The electrokinetic field intensity, which is its force function, depends both on spatial 

change in potential φek, and on the change of vector potential A with  time.  The  

electrokinetic field vector is expressed in terms of the sum, taken with the opposite sign, of 

electrokinetic potential gradient and the derivative of vector potential with respect to time, 

۳௘௞ ≝ −൬܌܉ܚ܏φ௘௞ +
ۯ݀
ݐ݀ ൰ =

1
௘௦ܧ2

ଶݒ

ܿଶ ૚௥ − ܮ
݀݅
ݐ݀ ૚௭ .           

(3.17) 

The second summand of the electrokinetic intensity, ܮ ݀݅ ⁄ݐ݀ , predetermines such 

phenomena as self-induction and mutual induction. The origin of formula (3.17) explains the 

physical nature of these phenomena without mentioning or resorting to the term “magnetic 

field”. 



3.2.8 Other parameters of the electrokinetic field 

The quantities introduced above reflect only a part of the electrokinetic field 

properties. Some other derivatives still remain unconsidered that, in the event of some 

practical need, may acquire physical significance and the status of physical quantities. 

4 Electric field of a moving charge carrier 

4.1 Superposition of electrostatic and electrokinetic fields 

There are only two kinds of energy subject to consideration in mechanics: firstly, it 

is the energy that depends on bodies’ relative position, and secondly, it is the energy that is 

determined by the speed of one body relative to the other, which is accepted to be 

conditionally immovable. The first kind is potential energy, the second kind is kinetic energy. 

Extending  this  proposition  to  the  electric  field  and  on  the  basis  of  the  above  results  it  is  

natural to consider that the electric field of a moving charge carrier is the superposition of 

the electrostatic and the electrokinetic fields. The basic feature of the first is the presence of 

potential (electrostatic) energy while the second is characterized by kinetic (electrokinetic) 

energy. 

4.2 Electric field intensity of a point charge carrier 

Leaving all other field parameters out of consideration, let us dwell on the analysis 

of the basic force characteristic of the field: its intensity. 

Intensity E of  the  electric  field  is  the  sum  of  the  electrostatic  (2.8)  and  the  

electrokinetic (3.7) field intensities, 

۳ = ۳௘௦ + ۳௘௞ = ௘௦.௥ܧ ቆ1 +
1
2
ଶݒ

ܿଶቇ૚௥ + ௘௦.௭ܧ ቆ1 −
1
2
ଶݒ

ܿଶቇ૚௭ −
φ௘௦ܽ
ܿଶ ૚௭ .       (4.1) 

It  is  interesting  to  note  that  the  intensity  that  corresponds  to  the  summand  

φ௘௦ܽ ܿଶ⁄  in  formula  (4.1)  is  the  product  of  field  mass  per  unit  of  charge  φ௘௦ ܿଶ⁄  and 

acceleration a, which is in good agreement with Newton's second law. It should be noted, as 

the theory of electromagnetism denies applicability of mechanics for the analysis of 

electrical phenomena, and for that reason it is unable to reflect the influence of a charge 

carrier’s motion parameters on the characteristics of its electric field. 

Relation (4.1) demonstrates that compared to the electrostatic field, the intensity of 

the electric field in motion increases in the transverse direction (relative to the velocity 

vector) and decreases in the longitudinal direction. As appears from the above, the cause of 

it is the kinetic (electrokinetic) energy possessed by a moving electric field, not the change in 



linear dimensions of space, as is predetermined by the theory of relativity. Correlation of the 

obtained result (4.1) with the classical explanation of this phenomenon is accomplished in 

sub-section 5.4. 

4.3 Electric field intensity of a linear charge carrier 

Intensity E of the electric field is the sum of electrostatic (2.18) and electrokinetic 

(3.17) field intensities, 

۳ = ۳௘௦ + ۳௘௞ = E௘௦ ቆ1 +
1
2
ଶݒ

ܿଶቇ૚௥ − ܮ
݀݅
ݐ݀ ૚௭ .                               

(4.2) 

Even  in  case  of  a  charge  carrier’s  uniform  motion,  the  electric  field  intensity  

increases, as was found earlier, only because the field acquires kinetic energy in course of 

motion. 

Contrary to this physically grounded explanation, some authors, for instance (4, p. 

184) hold on to the opinion that the reason why the field intensity increases has to do with 

“excess surface charges” that are found on every conductor irrespective of whether they 

carry electric current or not. The opinion that there exist “excess charges” coming from no 

one knows where is one more postulate supporting the theory of electromagnetism at its 

vulnerable spot.  

There is one more classical explanation (3, p. 272) based on relativistic reduction of 

a charge carrier’s length. The obtained result (4.2) is also compared to this explanation in 

sub-section 5.4. 

5 Theoretical grounding of the empirical relations forming the basis of 

electromagnetism 

5.1 The nature of Ampere’s law 

Supposing there are two conductors with equal unidirectional currents i. Each 

conductor  may  be  thought  of  as  two  oppositely  charged  linear  carriers,  one  of  which  

corresponds to the lattice ion core of the conductor’s material while the other represents 

electron gas. Naturally, linear charge density at these carriers must satisfy the condition 

λ௜ = −λ௘. The presence of current ݅ = λ௘ݒ௘ = −λ௜ݒ௘ in the conductors means that the 

negatively charged linear carrier is moving at a speed of ve relative to the positively charged 

immobile carrier. Force interaction of the conductors’ unit length is determined by both 

electrostatic and electrokinetic fields. Schematically, the effect of forces is shown in Figure 3. 



Forces F1, F4 account for the effect of the electrostatic fields of charge carriers that 

are immobile relative to each other. Forces F2, F3 are the forces that spring up among the 

carriers moving relative to each other, and so they include components of both electrostatic 

and electrokinetic origin. 

 
To determine the forces let us resort to relation (4.2) that specifies the electric field 

intensity of a linear charge carrier. Thus we obtain the following expressions: 

ଵܨ = λ௜ܧ௘௦.௜ ,                                                             (5.1) 

ଶܨ = λ௘ܧ௘௦.௜ ቆ1 +
1
2
ଶݒ

ܿଶቇ = −λ௜ܧ௘௦.௜ ቆ1 +
1
2
ଶݒ

ܿଶቇ ,                          (5.2) 

ଷܨ = λ௜ܧ௘௦.௘ ቆ1 +
1
2
ଶݒ

ܿଶቇ = −λ௜ܧ௘௦.௜ ቆ1 +
1
2
ଶݒ

ܿଶቇ ,                          (5.3) 

ସܨ = λ௘ܧ௘௦.௘ = λ௜ܧ௘௦.௜   .                                                 (5.4) 

The sum of these forces equals force F that acts upon the conductor’s unit length in 

presence of unidirectional currents, 

ܨ = ଵܨ + ଶܨ + ଷܨ + ସܨ = −λ௜ୣܧୱ.௜
ଶݒ

ܿଶ  .                                    (5.5) 

The negative value of the force, F< 0, points to the fact of the conductors’ mutual 

attraction. 

The diagram illustrating the effect of forces that spring up in case of opposite 

currents does not differ from the one shown in Figure 3, but the direction of the carriers’ 

velocity in conductor 2 is now reversed. It means that electrons in the conductors are 

moving relative to each other at a double speed, and force F4 will be described by the 

following relation 

ve 

ve 
F2 F3 

Conductor 1 

Conductor 2 

Figure 3 

F1 F4 



ସܨ = ௘௦.௘ܧ௘ߣ ቆ1 +
1
2

ଶ(ݒ2)

ܿଶ ቇ ,                                     (5.6) 

Summing up the forces, we obtain that the resultant F has changed in direction but 

retained its absolute value, 

ܨ = λ௜ܧ௘௦.௜
ଶݒ

ܿଶ  .                                                 (5.7) 

For comparison, let us determine the same force in terms of Ampere’s law, which is 

one of the basic postulates that serve as the foundation of the theory of electricity, 

ܨ =
μ଴݅ଶ

2πܴ =
ε଴
ε଴
μ଴

λ
2πܴ λݒ

ଶ = λܧ
ଶݒ

ܿଶ  .                          (5.8) 

Since the direction of current depends on the motion of positive charge carriers, 

λ = λ௜, comparing formulas (5.5) and (5.7) with expression (5.8) we can see full agreement in 

their absolute values. To get the information as to a force direction, electromagnetic theory 

recommends using a “left-hand rule” in addition to formula (5.8). As for formulas (5.5), (5.7), 

in contrast to (5.8), they can give the direction of forces, not only their magnitude. 

There is complete agreement in the results of theoretical and empirical (from 

Ampere’s law) determination of interaction force between current-carrying conductors, 

which is the evidence of validity of the proposed theory. 

Moreover, the achieved theoretical grounding of Ampere’s law enables one to 

understand the origin of ponderomotive forces, determine their structure and explore the 

role of the iron core in the process of force interaction. It follows from the above that force 

interaction between current-carrying conductors differs essentially in the structure of forces 

from a similar interaction of, for instance, the electron flow in a cathode-ray tube where 

there are no immobile positive charge carriers. 

The described mechanism of emerging Ampere’s forces is much more informative 

than the existing explanation, which is based on such experimentally discovered phenomena 

as for instance, the Lorentz force or the Biot-Savart law. 

5.2The nature of the Lorentz force 

5.2.1 Preliminary comment 

To show the nature of the Lorentz force, let us find, based on the results achieved in 

the previous sections of this study, the expression for the force exerted on a point charge 

that is moving in the vicinity of a current-carrying conductor. In terms of electromagnetism, 

it corresponds to a charge carrier’s motion through the conductor’s magnetic field. The 



analysis will be successively performed for different directions of a carrier’s motion relative 

to the conductor with subsequent generalization of the obtained results. 

5.2.2 The movement of a point charge carrier along the current- carrying conductor 

Once more, just like in sub-section 5.1, let us imagine a conductor as a unity of two 

oppositely charged linear charge carriers, one of which corresponds to the ionic lattice of the 

conductor’s material while the other represents free electrons (electron gas). Physically, the 

presence of electric current in a conductor signifies longitudinal motion of the second of the 

above mentioned carriers in relation to the first. 

Assume that the motion of electrons in the conductor generates current ݅ = λ௘ݒ௘  

where λe< 0 is the linear charge density of current-generating electrons, ve= const is electron 

speed. Let a test charge carrier is moving along the conductor with velocity v in the direction 

coinciding with conventional flow. Figure 4 shows velocity directions ve and v in dashed lines. 

To determine the electric field intensity at the point of location of the test charge 

carrier we will switch to the coordinate system associated with this charge carrier. 

In this coordinate system, the speed of the conductor’s ionic lattice will be vi, vi = −v 

while the speed of electrons producing current flow in the conductor will be −(v+ve). 

As follows from the above, the motion of the conductor’s ionic lattice and electrons 

will create the respective electrokinetic fields. The resultant intensity E of the current-

carrying conductor’s electric field is the sum of intensity Ei of  the  ionic  lattice  field  and  

intensity Eе of the electron field. In accordance with relation (4.2), these intensities will be 

expressed by formulas (5.9), (5.10), 

௜ܧ = ௘௦.௜ܧ ቆ1 +
1
2
ଶݒ

ܿଶቇ  ,                                              (5.9) 
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௘ܧ = ௘௦.௘ܧ ൭1 +
1
2
൫−(ݒ + ௘)൯ݒ

ଶ

ܿଶ
൱ = ௘௦.௜ܧ− ൭1 +

1
2
൫−(ݒ + ௘)൯ݒ

ଶ

ܿଶ
൱  .    (5.10) 

This result permits finding intensity E of the conductor’s electric field in the form of 

(5.11), 

ܧ  = ௜ܧ + ௘ܧ = −
1
௘௦.௜ܧ2

௘ݒ
ܿଶ

ݒ2) +  ௘).                         (5.11)ݒ

In the same way, for a charge carrier’s motion in a direction opposite to that of the 

current, we will obtain field intensity which is expressed by formula (5.12) 

ܧ =
1
௘௦.௜ܧ2

௘ݒ
ܿଶ

ݒ2) −  ௘).                                      (5.12)ݒ

As follows from formula (5.12), the field vector in this case may have different 

directions. If 2v>ve it will be directed away from the conductor, in case 2v<ve its direction will 

change to the opposite, and at 2v=ve the intensity will be equal to zero. 

5.2.3 The movement of a point charge carrier in a transverse direction relative 

 to the current-carrying conductor 

Assume that a test charge carrier is moving in the direction “away from the 

conductor”.  Let  us  single  out  some  small  segment  Δl in the conductor carrying current i. 

Figure 5 shows that in the coordinate system (х, y)  associated with the charge carrier,  the 

ionic lattice of the conductor segment Δl will  be  moving  with  velocity  (−v) relative to the 

carrier, and the velocity of current-producing electrons in segment Δl will be (ve−v). 

Along with electrostatic fields, electrokinetic fields are created by moving ions and 

electrons of segment Δl at point А where the test charge carrier is located. To begin with, let 

us consider the electrokinetic field of the carrier that corresponds to the ionic lattice (Figure 

5).  

As a charge carrier is moving along the r-axis, the projection of this field vector onto 

the axes of the (r, z) coordinate system will be expressed by the respective formulas:  

Δܧ௘௞.௜.௥ = Δܧ௘௦.௜ sin αቆ1 − 0,5
ଶݒ

ܿଶቇ ,                              (5.13) 

Δܧ௘௞.௜.௭ = Δܧ௘௦.௜ cosαቆ1 + 0,5
ଶݒ

ܿଶቇ .                             (5.14) 
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Let  us  pass  on  to  infinitesimals  and  integrate  the  obtained  relations  (5.13)  and  

(5.14) with respect to the current-carrying conductor’s length l. As a result, we will arrive at 

௜.௥ܧ = න
λܴ

4πε଴(ܴଶ + ݈ଶ)ଷ ଶ⁄

ஶ

ିஶ
ቆ1 − 0,5

ଶݒ

ܿଶቇ݈݀ = ୱ.௜ୣܧ ቆ1 − 0,5
ଶݒ

ܿଶቇ ,    (5.15) 

௜.௭ܧ = න
λ݈

4πε଴(ܴଶ + ݈ଶ)ଷ ଶ⁄

ஶ

ିஶ
ቆ1 − 0,5

ଶݒ

ܿଶቇ݈݀ = 0.                  (5.16) 

As seen from the obtained relations, the electrokinetic field intensity of the ironic 

lattice has only one radial component (5.15). 

Now we will proceed to determining the electrokinetic field intensity of conduction 

electrons in the conductor’s segment Δl. Let us turn the (x, y) coordinate system so that the 

х-axis were perpendicular to the velocity vector (ve−v), and the y-axis were parallel to this 

vector (Figure 6). This allows the expressions to be written for projections of the electrons’ 

electric field intensity onto the (x, y) coordinate axes, 

௘.௫ܧ∆ = ௘௦.௘ܧ∆ cos(α − β)ቆ1 + 0,5
௘ଶݒ + ଶݒ

ܿଶ ቇ .                       (5.17) 

௘.௬ܧ∆ = ௘௦.௘ܧ∆ sin(α − β)ቆ1 − 0,5
௘ଶݒ + ଶݒ

ܿଶ ቇ .                       (5.18) 

Let us find the projections of quantities (5.17) and (5.18) onto the (r, z) coordinate 

axes, 

௘.௥ܧ∆ = ௘.௬ܧ∆ cosβ+∆ܧ௘.௫ sinβ  ,                                (5.19) 

௘.௭ܧ∆ = ௘.௬ܧ∆− sin β + ௘.௫ܧ∆ cos β .                           (5.20) 

In the latter formulas angle β is a constant, β = arctg(ݒ௘ ⁄ݒ ), and the trigonometric 

functions of angle α are expressed through the lengths of the corresponding segments. 

Having substituted these quantities and after passing on to infinitesimals we will integrate 

relations (5.19) and (5.20) for l going from – ∞ to + ∞. We will obtain that the projecƟons of 



the vector of the electric field created by electrons at the observation point are expressed by 

formulas (5.21), (5.22),  

௘.௥ܧ = ௘௦.௘ܧ ቆ1 − 0,5
ଶݒ

ܿଶ + 0,5
௘ଶݒ

ܿଶቇ = ௘௦.௜ܧ− ቆ1 − 0,5
ଶݒ

ܿଶ + 0,5
௘ଶݒ

ܿଶቇ  ,    (5.21) 

௘.௭ܧ = ௘௦.௘ܧ
ݒ ௘ݒ
сଶ = ௘௦.௜ܧ −

ݒ ௘ݒ
сଶ  .                                   (5.22) 

 

 

 

 

 

 

 

 

 

 

The radial projection of the electric field vector is the sum of the ion field (5.15) and 

the electron field (5.21) intensities, 

௥ܧ = ௜.௥ܧ + ௘.௥ܧ = −
1
௘௦.௜ܧ2

௘ଶݒ

ܿଶ  .                               (5.23) 

In the direction of the z-axis, the component of the ion field intensity equals zero, 

therefore in this direction the intensity is only determined by the electron field intensity 

(5.22), 

௭ܧ = ௘.௭ܧ = ௘௦.௜ܧ−
ݒ௘ݒ
сଶ .                                        (5.24) 

Formulas (5.23) and (5.24) express the components of intensity of the electric field 

that is created when a charge carrier is moving away from the conductor. In the same way, 

analyzing field intensity in case of a test charge carrier’s movement towards the conductor, 

we will obtain that the radial component remains unchanged while the component along the 

z-axis reverses its sign because so does speed v, 

௥ܧ = −
1
௘௦.௜ܧ2

௘ଶݒ

ܿଶ  ,                                             (5.25) 
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௭ܧ = ௘௦.௜ܧ
ݒ௘ݒ
сଶ .                                                  (5.26) 

All  relations  that  account  for  the  intensity  of  the  field  acting  upon  a  test  charge  

carrier in different types of its movement relative to the current-carrying conductor, that is 

(5.11) for a test carrier’s movement in the direction coinciding with conventional flow, (5.12) 

for  the  opposite-to-current  direction,  (5.23),  (5.24)  for  movement  away  from  the  current-

carrying conductor and (5.25), (5.26) for movement towards the conductor may be written 

as one vector formula (5.27), 

۳ = ܞ)− − (௘ܞ 0,5 × ௘ܞ) × ۳ୣୱ.௜)ܿିଶ.                          (5.27) 

It will be remembered that intensity (5.27) was determined in terms of the 

coordinate system associated with a test charge carrier, therefore the force acting upon this 

carrier is the product of this intensity by the amount of test charge q, 

۴ = ۳ݍ = ܞ)ݍ− − (௘ܞ 0,5 × ௘ܞ) × ۳ୣୱ.௜)ܿିଶ,                (5.28) 

5.2.4 The Lorentz force 

In accordance with the theory of electromagnetism, longitudinal motion of a 

positively charged linear charge carrier creates a magnetic field with induction ۰ = ܿିଶܞ ⤬

۳, where v is velocity vector, E is the charge carrier’s electric-field vector. Applying this 

proposition to vector product −ܿିଶ(ܞ௘ × ۳ୣୱ.௜) in formula (5.27), considering that ܞ =  ,௘ܞ−

then this formula may be recast in the form of (5.29), 

۳ ܞ) = − (ࢋܞ0,5 × ۰ .                                            (5.29) 

Hence  it  follows  that  the  force  acting  upon  test  charge  carrier  q is expressed by 

relation (5.30), 

۴ = ۳ݍ = ܞ)ݍ  − (ࢋܞ0,5 × ۰ .                                   (5.30) 

Formula (5.28) and its transformation by using the concept of magnetic induction 

(5.30) is the most general expression of the Lorentz force, resulting in some particular cases. 

Firstly, when the speed of carrier of charge q is much more than the electron speed, 

|ݒ| ≫  ௘|, the second summand may be disregarded, and relation (5.30) turns into theݒ|

classical formula of the Lorentz force: 

۴ = ܞݍ− × ௘ܞ) × ۳௘௦.௜)ܿିଶ۳ݍ = ܞݍ  × ۰ .                       (5.31) 

Secondly, in absence of a charge carrier’s motion relative to the current-carrying 

conductor, i.e. at v = 0, nevertheless, it will be acted upon by a force (5.32), 

۴ = ௘ܞݍ0,5 × ௘ܞ) × ۳௘௦.௜)ܿିଶ = ࢋܞ ݍ 0,5−  × ۰.                 (5.32) 



This  conclusion  disproves  a  deeply  rooted  opinion  that  “a  charge  at  rest  is  not  

affected by the magnetic field”. Just because the force is so small it has not yet been 

discovered in an experiment. 

Thirdly, when a charge carrier’s velocity and electron velocity in the conductor 

coincide in direction, force F may have different directions or may be equal to zero 

depending on the sign and the value of the sum in brackets of formula (5.28). If the carrier’s 

motion is in a reverse direction relative to the electron velocity, than given any correlation of 

absolute values of speeds v and ve, force F cannot change the direction or become equal to 

zero. 

The accomplished analysis of the nature of the Lorentz force demonstrates that the 

generalization of experimental data in the form of ۴ = ܞݍ × ۰ serving the basis for 

electromagnetic theory is a much poorer representation of the physical phenomenon as 

compared to the above theoretical investigation into the issue that has resulted in relation 

(5.28). 

5.3 The nature of the law of electromagnetic induction 

5.3.1 Emf generated with the conductor’s motion in a constant magnetic field 

Our investigation will be conducted by means of a construction frequently 

mentioned in textbooks featuring a loop with a movable bar (Figure 7) that is placed in a 

magnetic field of a rectilinear conductor containing current ݅ = λ௘ݒ௘  where λe is the linear 

density of free charge carriers (electrons), ve is the speed of these carriers. Let us place the 

cylindrical coordinate system (r, θ,z) so that the z-axis coincide with the longitudinal axis of a 

current-carrying conductor.  

Item  5.2.3  shows  that  when  a  charge  carrier  is  moving  in  a  transverse  direction  

relative to the current-carrying conductor, it is affected by an electric field whose intensity 

projections are expressed by formulas (5.23), (5.24). To calculate the value of the emf 

generated with the bar motion at a speed of v it will suffice to multiply these projections by 

diameter d and by the bar length l respectively. As a result, we obtain emf in a transverse 

direction of the bar (5.33), 

ℰ௥ = −
1
ୱ.௜ୣܧ2

௘ଶݒ

ܿଶ ݀,                                               (5.33) 

and emf in a longitudinal direction of the bar (5.34),  

ℰ௭ = ୱ.௜ୣܧ−
ݒ௘ݒ
сଶ ݈ = ୱ.௜ୣܧ

ݒ௜ݒ
сଶ ݈.                                       (5.34) 



 

 

 

 

 

 

 

 

 

Due to a slow speed of electrons in the conductor, emf (5.33) has not yet found its 

experimental confirmation, to say nothing of a technical application. Longitudinal emf (5.34) 

is fully in keeping with the emf that is spoken of in the law of electromagnetic induction. 

Indeed, considering that the direction of the normal to the surface of the circuit is pointed 

towards us and having substituted the expression of electrostatic intensity ୣܧୱ.௜  into relation 

(5.34) we obtain 

ℰ௭ = ௘௦.௜ܧ−
ݒ௜ݒ
сଶ ݈ = −

λ௜ݒ௜
2πε଴ܴܿଶ

݈ݒ =  (5.35)                         ,݈ݒܤ−

where B is the induction of the current-carrying conductor’s magnetic field. 

Formula  (5.35)  is  in  complete  agreement  with  the  classical  expression  of  emf  

induced in a moving conductor, but it has been derived irrespective of any empirical 

postulates, resulting from a pure theoretical analysis. 

5.3.2 Emf in a circuit placed in a changing magnetic field 

Assume  there  is  a  conductor  with  a  linearly  increasing  current  ݅ = λ௜ݒ௜  where 

௜ݒ = ଴ݒ +  .Let us place loop ABCD near the conductor (Figure 8) .ݐܽ

Figure 7 
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To determine the emf that is generated in the loop let us resort to relation (3.17), 

whereby  in  the  vicinity  of  a  linear  charge  carrier  that  is  in  accelerated  motion  the  

electrokinetic field is created whose intensity is 

۳௘௞ =
1
௘௦ܧ2

ଶݒ

ܿଶ ૚௥ − ܮ
݀݅
ݐ݀ ૚௭ =

1
௘௦ܧ2

ଶݒ

ܿଶ ૚௥ −
λ௜܉௜

2πε଴ܿଶ
ln
ܴ଴
ܴ ૚௭ .           (5.36) 

The field vector represented in this expression by the first summand has a radial 

direction and thus initiates equal and unidirectional emfs in the loop sides AD and BC.  

Loop sides AB and CD are parallel to the conductor, therefore emf will be generated 

in them that is caused by the second summand of the expression (5.36). The electrokinetic 

field intensities in these sides will be expressed by relations (5.37) and (5.38),  

۳௘௞஺஻ = −
λ௜܉௜

2πε଴ܿଶ
ln
ܴ଴
ଵݎ

 ,                                     (5.37) 

۳௘௞஼஽ = −
λ௜܉௜

2πε଴ܿଶ
ln
ܴ଴
ଶݎ

 .                                     (5.38) 

Multiplying now the obtained intensities by the lengths of the sides, we will get the 

induced emfs. Electromotive force ℰ that is generated throughout the loop will be found by 

summing up the emfs of the sides in accordance with Kirchhoff’s second law. The 

contribution of sides AD and BC to the sum of emfs will be zero, therefore we obtain 

ℰ = ௘௞஺஻ܧ)݈ − (௘௞஼஽ܧ = −
λ݈ܽ

2πε଴ܿଶ
ln
ଶݎ
ଵݎ

 .                         (5.39) 

It is easily ascertained that this result matches emf ℰ = −݀Ф ⁄ݐ݀  that can be 

derived from Faraday’s law. 

Indeed, induction B of a magnetic field around a conductor with a linearly increasing 

current is expressed by formula (5.40), 

ܤ =
λ

2πε଴ܿଶݎ
ܽ ቀݐ −

ݎ
ܿቁ .                                       (5.40) 
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Magnetic flux through a surface element of length l and width Dr will make DФ = 

BDrl. Integrating this expression over r from r1 to r2, we will obtain magnetic flux Ф through 

the whole loop ABCD, 

Ф = න ݎ݈݀ܤ =
λ݈ܽݐ
2πε଴ܿଶ

ln
ଶݎ
ଵݎ
−

λ݈ܽ
2πε଴ܿଷ

ଶݎ) − (ଵݎ
௥మ

௥భ
 .         (5.41) 

Now taking the derivative of flux Ф with respect to time, we will arrive at the 

desired expression for electromotive force, 

ℰ = −
݀Ф
ݐ݀ = −

λ݈ܽ
2πε଴ܿଶ

ln
ଶݎ
ଵݎ

 .                                 (5.42) 

The obtained relation (5.42) fully coincides with expression (5.39). They differ in 

that formula (5.39) has been derived relying on the above introduced basic concepts of the 

systematic theory of electrical phenomena whereas expression (5.42) has no theoretical 

grounding, being just a generalization of experimental data accomplished by Michael 

Faraday. 

5.4 Lorentz transformations 

Contemporary electromagnetic theory provides a rather formal explanation of the 

change in the electric field intensity in course of a charge carrier’s motion, making 

references to the effects of a special theory of relativity (STR). It is agreed that the change in 

intensity under these conditions is subject to the Lorentz transformations, but none the less, 

there seems to be no concern about the reason why the intensity should be subject to these 

mathematical transformations. 

The classical solution of the problem about the field intensity of a point charge 

which is in uniform motion at the moment when the charge carrier is passing through the 

origin, is given in textbook (4, p. 238). In accordance with this solution, the intensity should 

be expressed by formula (5.43), 

۳௖௟ = ௘௦.௥ܧ
1 − ݒ) ܿ⁄ )ଶ

(1 − ݒ) ܿ⁄ )ଶ sinଶ α)ଷ ଶ⁄ ૚௥ + ௘௦.௭ܧ
1 − ݒ) ܿ⁄ )ଶ

(1 − ݒ) ܿ⁄ )ଶ sinଶ α)ଷ ଶ⁄ ૚௭ ,      (5.43) 

where α is the angle between the vector of the carrier’s velocity v and the radius vector R of 

the observation point relative to the charge carrier (see Figure 1). 

Based on the systematic theory of electrical phenomena that is presented here, 

formula (5.44) will be true for the carrier’s uniform motion, which can be derived from 

relation (4.1), putting acceleration equal to zero, a = 0, 



۳ = ௘௦.௥ܧ ቆ1 +
1
2
ଶݒ

ܿଶቇ૚௥ + ௘௦.௭ܧ ቆ1 −
1
2
ଶݒ

ܿଶቇ૚௭ .                 
(5.44) 

Qualitatively, formula (5.44) differs from expression (5.43) in that intensity (5.44) 

does not depend on the angle α. In order to discover a quantitative difference, let us make a 

comparison of intensities predicted by relations (5.43) and (5.44), taking three values of this 

angle: α = 0, α = π/2, α = π/4. 

At α = 0 intensity (5.43) has only one component along the z-axis, that takes the 

form of 

௖௟|஑ୀ଴ܧ = −௘௦.௭(1ܧ ݒ) ܿ⁄ )ଶ),                               (5.45) 

while from (5.44) follows 

஑ୀ଴|ܧ = ௘௦.௭(1ܧ − ݒ) ܿ⁄ )ଶ 2⁄ ).                                   (5.46) 

At α = π/2 the respective intensities are expressed by formulas (5.47) and (5.48), 

௖௟|஑ୀ஠ܧ ଶ⁄ = ௘௦.௥(1ܧ − ݒ) ܿ⁄ )ଶ)ିଵ ଶ⁄  ,                         (5.47) 

஑ୀ஠|ܧ ଶ⁄ = ௘௦.௥(1ܧ + ݒ) ܿ⁄ )ଶ 2⁄ ).                              (5.48) 

At α = π/4 the relations assume the following form: 

௖௟|஑ୀ஠ܧ ସ⁄ = ௘௦ܧ
√8 (1− ݒ) ܿ⁄ )ଶ)
(2 − ݒ) ܿ⁄ )ଶ)ଷ ଶ⁄  ,                          (5.49) 

஑ୀ஠|ܧ ସ⁄ = ௘௦(1ܧ + ݒ) ܿ⁄ )ସ 4⁄ )ଵ ଶ⁄ .                           (5.50) 

Let us compare the quantities by analyzing the graphs of intensity ratios ܧ௖௟|஑ ⁄஑|ܧ  

for each value of angle α at changing speed v in the range of 0 < ݒ < 2 ∙ 10଼ m/s. The 

respective graphs are shown in Figure 9. 
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The analysis of the graphs shows that at speeds available for experimental 

verification, the ratio between the intensity calculated from the classical formula and the 

intensity found by means of STEP virtually does not differ from a unity. The difference 

increases with increasing speed, but even at a speed of v ≈ 0,5·108 m/s it makes up no more 

than one and a half percent. As the speed approaches the speed of light, the difference in 

intensity values becomes more pronounced, but it is significant that STEP does not result in 

infinitely large values of intensity at v = c, which means that it imposes no limitations on 

reaching or even exceeding the speed of light. 

The same results follow from the comparison of intensities in case of a linear charge 

carrier. 

To date, there is no experimental data on the range of speeds close to the speed of 

light, which could have guided us in preferring one of the correlated theories. Nevertheless, 

the formal origin of the expression (5.43) and the physically grounded derivation of relation 

(5.44) allow doubts in the validity of a classical viewpoint that is based solely on the belief in 

the applicability of the Lorentz transformations to physical processes. 

The above theoretical explanation of the dependence of field intensity on the speed 

is based only on admitting the fact that the electrostatic field is a material substance that 

acquires  kinetic  energy  when  in  motion.  All  other  logical  corollaries  of  these  propositions  

cannot be challenged as being purely mathematical constructs. 

6 Solution of problems unsolved in the theory of electromagnetism 

6.1Force interaction of point charge carriers 

6.1.1 Interaction in case of motion in mutually perpendicular directions  

Interaction of point charges in case of their motion in perpendicular directions is 

described in terms of the theory of electromagnetism in textbooks (18, p. 212), (19, p. 208) 

as well as in a number of other books. The authors of all these works insist that in case of 

such interaction, one of the fundamental propositions in physics – the principle of equality 

of  action  and  reaction  –  becomes  invalid.  For  instance,  textbook  (18,  p.  214)  says  in  this  

respect: “…time and again, we have pointed out that in case of interactions by means of 

fields, the principle of equality of action and reaction is not necessarily observed.” 



As a matter of fact, such a conclusion is certainly erroneous. It is just that failing to 

explain  the  mechanism  of  interaction  in  terms  of  the  accepted  classical  paradigm  the  

authors resorted to an easier way of inventing a new postulate that has canonized 

contradiction to Newton’s law. The analysis of interaction forces between charge carriers 

presented hereunder refutes the opinion of the above sources and shows that in this case, 

too, action equals reaction. 

Assume  there  are  two  charge  carriers  in  uniform  motion,  whose  position  and  

velocities  are  shown  in  Figure  10a.  The  problem  is  that  charge  carrier  № 1  is  within  the  

magnetic field of charge carrier № 2, and consequently, it is affected by some nonzero force. 

At the same time, charge carrier № 2 is in one of the special points of the magnetic field 

created by charge carrier № 1, and in accordance with the theory of electromagnetism, the 

force exerted upon it should be equal to zero. Obviously, Newton’s third law is violated. 

 
Let us perform the analysis of forces acting upon the charge carriers using the 

above described STEP. 

To determine the electric field intensity of charge carrier № 1 at the point where 

charge carrier № 2 is located, let us go over to the coordinate system (r, z), that is moving 

along with it (Figure 10b). In this coordinate system, charge carrier  № 1 has velocity v1-v2, 

which means that the intensity of its electric field at the second carrier’s point of location 

will be determined by relation (3.7) where it should be put ݒଶ = ଵଶݒ +  ଶଶ. In order to useݒ

formula (3.7), let us turn the axes of the coordinate system (r, z) so that the z-axis is parallel 

and the r-axis perpendicular to velocity v1-v2. As a result, we will arrive at the intensity 

expressed in terms of the coordinate system (r, z), 

v1 − v2 

b) 

90˚ 

z 

r 

−v2
 

v1
 

Eek.z 

Eek.r
 

Ees.1 

c) 

90˚ 

z r 

v2−v1
 

−v
1
 

v2
 

Eek.r
 

Ees.2
 

Eek.z
 

v2 

а) 

х 

y 

1 

2 

v1 α 

Figure 10 



۳ଵଶ௥௭ = ௘௦.ଵܧ sin αቆ1 +
ଵଶݒ + ଶଶݒ

2ܿଶ ቇ૚௥ + ௘௦.ଵܧ cosαቆ1 −
ଵଶݒ + ଶଶݒ

2ܿଶ ቇ૚௭ , (6.1) 

where α = arc tg(−ݒଶ ⁄ଵݒ ). 

In the coordinate system (x, y), the vector of the field created by the first carrier at 

the  point  of  the  second  carrier’s  location,  is  determined  by  the  projections  of  vector  

components (6.1) onto this system’s axes, 

۳ଵଶ
௫௬ = ௘௦.ଵܧ sin 2α

ଵଶݒ + ଶଶݒ

2ܿଶ ૚௫ − ௘௦.ଵܧ ቆ1 − cos 2α
ଵଶݒ + ଶଶݒ

2ܿଶ ቇ૚௬  .       (6.2) 

To determine the electric field intensity of the second charge carrier at the point of 

the first carrier’s location (Figure 10c), similar constructions and calculations should be 

made. It will help us find the field intensity vector ۳ଶଵ
௫௬ as follows: 

۳ଶଵ
௫௬ = ௘௦.ଶܧ− sin 2α

ଵଶݒ + ଶଶݒ

2ܿଶ ૚௫ + ௘௦.ଶܧ ቆ1 − cos 2α
ଵଶݒ + ଶଶݒ

2ܿଶ ቇ૚௬ , (6.3) 

where Ees.2 is the electrostatic field intensity of the second carrier at the point of the first 

carrier’s location. 

Knowing intensities (6.2) and (6.3), it is not difficult to determine the forces acting 

upon the charge carriers. The second carrier with charge Q2 is acted upon by force F12  from 

the first carrier with charge Q1, 

۴ଵଶ = ܳଶ۳ଵଶ
௫௬ =

ܳଶܳଵ
4πε଴ܴଶ

ቆsin 2α
ଵଶݒ + ଶଶݒ

2ܿଶ ૚௫ − ቆ1 − cos 2α
ଵଶݒ + ଶଶݒ

2ܿଶ ቇ૚௬ቇ , (6.4) 

while the first carrier is experiencing force F21 coming from the second carrier, 

۴ଶଵ = ܳଵ۳ଶଵ
௫௬ =

ܳଶܳଵ
4πε଴ܴଶ

ቆ− sin 2α
ଵଶݒ + ଶଶݒ

2ܿଶ ૚௫ + ቆ1 − cos 2α
ଵଶݒ + ଶଶݒ

2ܿଶ ቇ૚௬ቇ . (6.5) 

It is seen from the comparison of expressions (6.4), (6.5) that components F12.у and 

F21.у of decomposition of vectors F12 and F21 along the coordinate axes are equal in modulus, 

opposite in direction and have a common line of action. These components provide central 

character of force interaction in full compliance with the requirements of Newton’s third 

law. 

Components F12.х and F21.х of vectors along the х-axis are also equal in modulus and 

opposite in direction, ۴ଵଶ.௫ = −۴ଶଵ.௫, but their lines of action are parallel, not identical. 

These forces create equal but opposite moments (Figure 11). 

Force F12.х acting upon the second charge carrier creates moment ۻଵଶ relative to 

the first carrier’s point of location,  



ଵଶۻ = ܐ ⤬ ۴ଵଶ.௫ ,                                               (6.6) 

where h is a vector that is equal in modulus to the distance between the charge carriers and 

that is directed from the first carrier’s point of location to the second carrier’s point of 

location. 

Force F21.х acting upon the first charge carrier creates moment ۻଶଵ relative to the second 

carrier’s point of location, 

ଶଵۻ = ܐ− ⤬ ۴ଶଵ.௫ .                                              (6.7) 

As  shown  in  Figure  11,  considering  that  ۴ଵଶ.௫ = −۴ଶଵ.௫,  moment  (6.7)  may  be  

expressed through force ۴ଵଶ.௫, 

ଶଵۻ = ܐ− ⤬ ۴ଵଶ.௫  .                                              (6.8) 

It is seen from the comparison of moments (6.6) and (6.8) that they are equal but 

opposite, which corresponds to the proposition “action is equal to reaction”. 

Thus, Newton’s third law is not violated, but the notions of “action” and “reaction” 

should include not only forces but also moments that are created when the bodies 

interacting by means of fields approach each other. 

6.1.2 Interaction in case of motion in parallel directions 

Many sources, for instance (4, pp. 157, 239), (18, p. 213) state that force interaction 

of charge carriers moving in parallel directions is composed of the electrical interaction 

(Coulomb’s law) and magnetic interaction that occurs because one of the carriers is within 

the other carrier’s magnetic field. 

Despite this opinion based on the postulates of the theory of electromagnetism, let 

us  show  that  the  interaction  of  charge  carriers  moving  with  the  same  speed  in  the  same  

direction is no different from electrostatic interaction. First of all, let us determine the 

electric field intensity of charge carrier № 1 at a point of location of charge carrier № 2. This 
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can be done by using relation (4.1) where speed v should be put equal to the speed of the 

carriers’ relative motion, v = v1 − v2, 

۳ଵଶ = ௘௦.ଵ.௥ܧ ቆ1 +
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௥ + ௘௦.ଵ.௭ܧ ቆ1 −
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௭ .  (6.9) 

In  the  same  way,  let  us  find  the  electric  field  intensity  of  charge  carrier  №2  at  a  

point of location of charge carrier № 1, 

۳ଶଵ = ௘௦.ଶ.௥ܧ ቆ1 +
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௥ + ௘௦.ଶ.௭ܧ ቆ1 −
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௭  .  (6.10) 

The carriers’ interaction forces can now be determined multiplying intensities (6.9) 

and (6.10) by the respective charges. The second carrier is acted upon by force (6.11) from 

the first carrier, 

۴ଵଶ = ܳଶܧ௘௦.ଵ.௥ ቆ1 +
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௥ + ܳଶܧ௘௦.ଵ.௭ ቆ1 −
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௭ , (6.11) 

and the first is acted upon by force (6.12) from the second, 

۴ଶଵ = ܳଵܧ௘௦.ଶ.௥ ቆ1 +
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௥ + ܳଵܧ௘௦.ଶ.௭ ቆ1 −
1
2

ଵݒ) − ଶ)ଶݒ

ܿଶ ቇ૚௭  .  (6.12) 

It  follows  from  the  above  formulas  that  in  a  particular  case  of  motion  when  the  

carriers’ speeds are the same, v1 = v2, the forces are equal to electrostatic interaction forces 

that can be calculated from Coulomb’s law. 

This conclusion should also be made from the following considerations. If we 

change over to the coordinate system that is  moving with velocity  v along with the charge 

carriers, v= v1 = v2, then the charge carriers will be immovable both with respect to one 

another  and  to  the  observer.  Hence  it  follows  that  there  cannot  be  any  magnetic  

components of interaction forces, interaction in this case is described by the laws of 

electrostatics alone. 

6.2Emission in case of accelerated charge carrier’s motion 

It  is  assumed,  for  instance  (5,  p.  95),  (14,  p.  145)  that  any  accelerated  motion  is  

accompanied by emission of electromagnetic waves. It follows from this proposition that an 

electron  traveling  around  the  atom’s  nucleus  should  inevitably  be  losing  energy.  As  a  

consequence, the problem of atomic stability arises that was solved by N. Bohr in quite a 

peculiar manner. Conforming to reality but contrary to classical electrodynamics, he has 

postulated that in certain states (in certain orbits) the electron does not emit 

electromagnetic waves. The development of science went along the lines prescribed by 



Bohr, but another problem cropped up – the problem of adequacy of electromagnetic 

theory that until now is unable to answer the question why there is no emission in these 

states (in these orbits). 

The best way to find out the conditions when a moving charge carrier becomes the 

source of energy emission is to analyze the change in its electric field energy with time. In 

the case when the energy changes, emission undoubtedly takes place; but if the energy does 

not change, it is an irrefutable evidence that there is no emission. 

Energy W of the charge carrier’s electric field is the sum of electrostatic ௘ܹ௦  (2.4) 

and electrokinetic ௘ܹ௞  (3.3) energies, 

ܹ = ௘ܹ௦ + ௘ܹ௞  .                                               (6.13) 

Let a charge carrier be moving in a circle with radius R, then considering that 

ଶݒ = ܞ ∙  :the derivative of energy W with respect to time t will take the form of ,ܞ

ܹ݀
ݐ݀ =

݀ ௘ܹ௞

ݐ݀ =
ܳଶ

8πε଴ܴܿଶ
܉ ∙  (6.14)                                  .  ܞ

Formula (6.14) allows for a rather important conclusion: a charge carrier in an 

accelerated motion emits energy only when the scalar product of acceleration vector а and 

velocity vector v is nonzero, ܉ ∙ ܞ ≠ 0. If a charge carrier is moving in a circle at a constant 

circular velocity, then the condition ܉ ∙ ܞ = 0 is always met, therefore it does not emit in 

spite of centripetal acceleration. Thus, to explain atomic stability there is no need to resort 

neither to Bohr’s postulates nor to the results of quantum mechanics. 

Bohr’s postulate should be substituted by a well-grounded conclusion: an electron 

that is uniformly traveling around the atom’s nucleus does not emit electromagnetic energy 

if its orbit is a circle. 

6.3 Transfer of energy. The Poynting vector. 

The electric field that is moving along with a charge carrier relative to an observer 

creates associated (with the field) energy flux S that must equal the product of electrostatic 

field energy density wes by velocity v. Energy density of a linear charge carrier’s electrostatic 

field wes was determined above by expression (2.23) from which we obtain 

܁ = ܞ௘௦ݓ =
λଶ

8πଶε଴ܴଶ
 (6.15)                                             .ܞ

Rendered in terms of electromagnetic theory, formula (6.15) takes the following 

form: 



܁ =
λଶ

8πଶε଴ܴଶ
ܞ =

1
2۳ ⤬

ܞ) ⤬ ۲) =
1
2۳ ⤬ ۶,                  (6.16) 

where E, H are electric and magnetic field vectors respectively. 

The resulting energy flux has turned out to be half as much as the flux predicted by 

the  Poynting  vector.  Such  a  discrepancy  seems  to  be  caused  by  the  substitution  of  a  real  

electric  field  by  an  imaginary  electromagnetic  field.  Sticking  to  the  concept  of  the  

electromagnetic field, field energy density is erroneously taken to be the sum of energy 

densities of electrostatic and magnetic fields. As a matter of fact, the magnetic field is in no 

way involved in transfer of energy, being just a sign of electric field motion. It is the electric 

field as a material object that is capable of motion and energy transfer. 

Here is  an analogy,  if  not  a  very good one:  the wind is  just  a  sign of  the fact  that  

there is air flow at a certain point in space, and consequently, there is transfer of associated 

(with air) potential energy. Wind as such is a phenomenon (immaterial object) that 

qualitatively represents the state of motion of air (material object) relative to the observer. 

In physics, the concept of motion is only applicable to material objects, not phenomena, 

provided the use is not figurative, as for instance in the expression “movement of thought”. 

But this is not concerned with physics. Just like the wind, the magnetic field is not a material 

substance. It merely reflects the existence of a moving electric field, which is doubtlessly a 

material medium. 

Furthermore, formula (6.16) testifies that the vector product of ۳ ⤬ ۶ accounts for 

energy flux only in case when these vectors belong to one and the same moving electric 

field. Incomprehension of this gave birth to “…a seemingly empty idea of ceaseless 

circulation of energy in closed paths within a static electromagnetic field” (19, p. 435). The 

same viewpoint is held by the author (17, p. 45). If the word “seemingly” is removed from 

this quotation, the latter will be quite to the point. Indeed, this idea is empty as it considers 

superimposition of some electrostatic field on a totally unrelated field of a permanent 

magnet. In this situation, one may be looking for energy flux only on the ground of implicit 

belief in the dogma expressed by the Poynting formula. And belief has never been a 

scientific method. 

6.4Solution of electromagnetic paradox 

One more issue unresolved in terms of classical theory is a problem that is known 

from the last mid-century as a certain “electromagnetic paradox”(13). The task is to take the 



readings of a voltmeter connected to brushes that are immobile relative to an observer, 

provided that there is a conductor carrying constant current i that is placed along the axis of 

a moving cylinder made of conducting material. A diagram illustrating the problem situation 

is shown in Figure 12. 

In spite of the fact that the magnetic permeability of cylinder wall material has a 

considerable effect on the magnitude of magnetic flux running through the measuring loop, 

it has been found experimentally that the voltmeter readings do not depend on the 

magnetic properties of this material. This is what makes the phenomenon paradoxical. 

  



 

 

 

 

 

 

 

Statement of the problem and its solution are presented in the book (12, p. 96). The 

solution is described on three pages of a serious mathematical text that resorts to such 

terms as “vortex field component”, “apparent polarization”, “electromagnetic induction”, 

“vector potential” etc. As a result, a solution is obtained in the form of expression (6.17) that 

accounts for the fact that the voltage U registered by the voltmeter is independent of the 

properties of the cylinder wall material. 

ܷ = ݅
μ଴ݒ
2π ln

ܴଵ
ܴଶ

 .                                               (6.17) 

The summary following the solution says: “The structure of the field that was easily 

(on three pages! – M.K.) determined from the relations of relativistic electrodynamics is not 

so easily explored by means of pre-relativistic theories.” Let us try to disprove this viewpoint. 

To solve the problem by means of the suggested systematic theory of electrical 

phenomena, let us change over to the system of coordinates where the cylinder is an 

immobile body. Let us imagine the current-carrying conductor to be a model consisting of 

two  linear  charge  carriers.  The  scheme  of  the  problem  is  now  transformed  into  a  model  

representation shown in Figure 13. 

 

 

 

 

 

 

At the accepted assumption of the cylinder’s immobility, the speed of a linear 

negative charge carrier will be ݒ௘ = ݒ− + ݅ λ௘⁄ , where λ௘ < 0 is  linear  density  of  the  
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negative charge. The speed of a positive charge carrier relative to the cylinder will be 

௜ݒ =  ݒ−

The potential of the cylinder’s outer surface will be considered to equal zero. Using 

relations (2.16) and (3.11), let us find the electric field potentials for each of the above 

mentioned charge carriers at distance R1, i.e. at the cylinder’s inner surface. 

φ௜ = φ௘௦.௜ + ߮௘௞.௜ =
λ௜

2πε଴
ቆ1 +

1
2
ଶݒ

ܿଶቇ ln
ܴଶ
ܴଵ

,                     (6.18) 

φ௘ = φ௘௦.௘ + ߮௘௞.௘ =
λ௘
2πε଴

ቆ1 +
1
2

ݒ−) + ݅ λ௘⁄ )ଶ

ܿଶ ቇ ln
ܴଶ
ܴଵ

.      (6.19) 

The wire connecting the voltmeter to the inner surface is also within the electric 

field at distance R1 from the carriers, but it is moving relative to the cylinder, that is why the 

above formulas cannot be used for calculating the potential. The potentials of the electric 

fields  created  by  the  charge  carriers  at  the  conductor’s  location  will  be  expressed  by  

formulas (6.21) and (6.22), 

φ௖௢௡ௗ.௜ =
λ௜
2πε଴

ln
ܴଶ
ܴଵ

,                                      (6.20) 

φ௖௢௡ௗ.௘ =
λ௘
2πε଴

ቆ1 +
1
2

(݅ λ௘⁄ )ଶ

ܿଶ ቇ ln
ܴଶ
ܴଵ

.                       (6.21) 

The sum of potentials (6.18), (6.19) and potentials (6.20), (6.21) is the resulting 

potential  of  the  cylinder’s  inner  surface,  and  since  the  cylinder’s  outer  surface  has  a  zero  

potential, the required voltmeter readings will equal this resulting potential,  

ܷ = φ௜ + φ௘ +φ௖௢௡ௗ.௜ + φ௖௢௡ௗ.௘ = ቆ−
ݒ݅

2πε଴ܿଶ
+
݅(݅ λ௘⁄ )
2πε଴ܿଶ

ቇ ln
ܴଶ
ܴଵ

  .     (6.22) 

The first summand of the right-hand side of relation (6.22) characterizes the 

influence of the cylinder’s speed upon voltage U, the second summand accounts for the 

dependence of voltage on quantity ݅ λ௘⁄ , which is the speed of conduction electrons relative 

to the conductor. Comparing solution (6.17) obtained in the work (12, p. 99) with expression 

(6.22), we will note complete agreement in the results as regards assessment of the 

influence of the cylinder’s speed v on voltage U. As for the influence of electron speed ݅ λ௘⁄  

on voltage U, the methods of relativistic electrodynamics proved helpless in solving this 

problem. 

Solving the problem by using the above demonstrated technique is much easier and 

more illustrative than the “easiest” techniques that relativistic electrodynamics can offer. 



The cause of this lies in the fact that this electromagnetic theory cannot do without 

a magnetic field as an independent entity, which emerged from an experiment (the Biot-

Savart law) and which, instead of test charge, requires a special instrument for its detection: 

a current-carrying coil of wire. As soon as the idea of using a magnetic field is abandoned, 

the problem becomes much easier, which was demonstrated above for instances of 

rectilinear translational motion of charge carriers. In STEP, the postulates of electromagnetic 

theory make room for conclusions obtained by means of careful consideration and 

demonstrative proof. As for curvilinear and rotational motions, things are somewhat more 

complicated, but not hopeless. 

Conclusion 

The chief result of the study is development of the fundamentals of the systematic 

theory of electrical phenomena, which is an alternative to the existing set of empirical laws 

along with their formal mathematical generalizations that constitute the basis of the 

contemporary theory of electromagnetism.  

The developed fundamentals of the systematic theory of electrical phenomena: 

· provide adequate description of electrical phenomena since 

they are able to predict the results that are in complete agreement with 

experimental evidence presented in the form of the laws of the classical 

electromagnetic theory; 

· logically follow the basic points of theoretical mechanics 

without denying them as it is characteristic of electromagnetic theory; 

· give a new systematic comprehension of the objective nature 

of electrical phenomena, which was hidden behind its empirical 

manifestations in the form of the laws of a traditional electromagnetic theory; 

· enable application of much simpler mathematical techniques 

than those used in contemporary electrodynamics for solving theoretical and 

applied problems; 

· facilitate studying the theory of electricity owing to the 

systematic arrangement of its conceptual framework; 

· possess a wider deductive resources as compared to 

electromagnetism, that enable us, for instance, 



− to imagine the whole set of empirical laws and postulates that form the basis 

of the classical theory of electricity, as the manifestation, in one form or another, of the 

energy possessed by the electrical field of charge carriers; 

− to provide theoretical grounding for phenomena that either get inadequate 

description in terms of classical theory, as for instance,  the interaction of charge carriers 

with violation of the principle of equality of action and reaction, or fail to find their 

theoretical explanation, as is the case with the problem of atomic stability;  

− to clarify some results of electromagnetic theory, i.e. the Lorentz force 

formula, the structure of Ampere's forces etc.; 

− to demonstrate the role of conductors' ionic lattice in force interaction of 

current-carrying conductors. 

Development of the theory is directed towards investigation of the electric field 

properties not only for rectilinear translational motion, but for other types of charge carriers' 

motion such as rotation, movement along the trajectories of arbitrarily changing curvature. 

Research along these lines should introduce clarity in determining physical сauses that 

provide for atomic stability. 

A rather important methodological procedure that was used in the development of 

the theory and that has a significant cognitive and scientific value in itself is the systematic 

parameterization  of  the  electric  field,  which  serves  as  the  basis  for  the  carrier  set  of  the  

theory, that is, the system of quantities providing objective representation of the 

electromagnetic field properties. 

Parameterization rests on the principle in accordance with which the system of 

physical quantities, meant for full and adequate representation of the electric field 

properties,  should  include  only  those  that  may  be  expressed  by  partial  derivatives  of  

function of potential and (or) kinetic field energy with respect to certain arguments. Such 

parameterization has at least two distinctive advantages:  

firstly,  it  initially  helps  eliminate  inner  contradictions  from  the  carrier  set  of  the  

theory as well as from the theory itself; 

secondly, it renders the signature of the theory transparent, since all the quantities 

are the derivatives (of some order) from one and the same function, which obviates the 

need for a specially arranged search of correlations between the quantities constituting the 

system. 



Systematic parameterization described herein with regard to the electric field, may 

be applied, virtually without alterations, in studies of a gravitational field. It will give a new 

insight into the properties of this field, and determine possible avenues for experimental 

studies. 
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