DOI 10.12851/EESJ201402ART29

Albert V. Zubkov, ScD, professor, Chief Researcher

Sergey V. Sentyabov, Junior Researcher Mining Institute, Ural Branch of Russian Academy of Sciences

Forecast Stability of Mining Excavation and HPS'sDams After 2020 [*Albert V. Zubkov*, *Sergey V. Sentyabov*]

Key words: Stresses of the rock mass of the countries of the world, 4th hypothesis their formation and changes over time, Forecast stresses in rock structures.

Annotation: As a result of research for the first was proposed new structure of the stress field in the Earth's crust that occurs in cyclic expansion and contraction of the Earth, including gravity-tectonic stress and astrophysical chronological bound and was given forecast of stresses in mine excavation in the mines of the world up to 2020 and 2030.

Устойчивость конструкций, возведенных в массиве горных пород, зависит от напряженно-деформированного состояния (НДС) и прочностных характеристик материала конструкции. К таким конструкциям относятся горные выработки, конструктивные элементы систем разработки при добыче полезных ископаемых (целики, стенки и кровля камер, выработанное пространство), а также элементы высоконапорных ГЭС, возведенных в глубоких каньонах.

Физико-механические свойства горных пород обычно определяют при проведении геологоразведочных работ или в лабораториях исследовательских организаций при испытании на разрушение образцов горных пород.

Обычно для перехода от прочности горной породы в образце к ее прочности в массиве используют коэффициент структурного ослабления, который зависит от размеров структурных блоков, заполнителя трещин и т.п.[1]

$$\left[\boldsymbol{\sigma}\right]_{M} = \left[\boldsymbol{\sigma}\right] \cdot K_{co} \,. \tag{1}$$

Для определения коэффициента структурного ослабления была принята зависимость, полученная Кимом [3].

$$K_{co} = \frac{1}{0.53(l/l_{co} + 1.75)} + 0.315,$$
⁽²⁾

где: 1 – линейный размер оцениваемого на прочность участка массива, м;

l_{сб} – линейный размер структурного блока, м.

Эта зависимость оправдала себя за тридцатилетний срок прогнозирования устойчивости конструктивных элементов систем разработки, сложенных крепкими магматическими и метаморфическими породами. С одной стороны, в десятках случаев подтвердилось прогнозируемое самообрушение горных конструкций при достижении ими расчетных параметров, а с другой стороны, при коэффициенте запаса прочности 1,3 была обеспечена устойчивость сотен конструктивных элементов систем разработки. Формулы 1 и

2 справедливы при действии сжимающих напряжений. При действии растягивающих напряжений К_{со} можно определить лишь опытным путем для каждого типа пород при действии сжимающих напряжений в зоне обнажения горных конструкций, откуда прежде всего и начинаются все разрушения.

При расчете напряженного состояния горных конструкций на ранних стадиях становления геомеханики в качестве граничных условий использовали природные напряжения в соответствии с гипотезами А.Гейма (1878 г.), А.Н.Динника (1951 г.) и Н.Хаста (1960 г.) (табл.1.1). В 2013 г. лабораторий геодинамики и горного давления ИГД УрО РАН была выдвинута новая гипотеза. В соответствии с этой гипотезой напряженное состояние массива горных пород изменяется во времени, а не является постоянным, полученным в момент измерения.

Таблица 1- Гипотезы формирования природных напряжений в массиве горных пород

А.Гейм, 1878г	$\sigma_{\rm X}^{\Pi}=\sigma_{\rm Y}^{\Pi}=\sigma_{\rm Z}^{\Pi}=-\gamma {\rm H}$
А.Н.Динник, 1951г	$\sigma_z^{\Pi} = -\gamma H$
	$\sigma^{\Pi}_{X}=\sigma^{\Pi}_{Y}=-\lambda\gamma H$
N.Hast, 1960r	$\sigma_Z^{\Pi} = -\gamma H$
	$\sigma^{\rm II}_{\rm X} = -\lambda\gamma H + T_{\rm 1}$
	$\sigma_{\rm Y}^{\rm II} = -\lambda\gamma H + T_2$
А.В.Зубков и К°,	
2000г	$\sigma_{z}^{\Pi} = -\gamma H + \sigma_{zm} + \sigma_{A\Phi}$
	$\sigma_{\rm X}^{\rm II} = -\lambda\gamma H + \sigma_{\rm xm} + \sigma_{\rm A\Phi}$
	$\sigma_{\rm Y}^{\rm II} = -\lambda\gamma H + \sigma_{\rm ym} + \sigma_{\rm A\Phi}$
	где $\sigma_{xm} + \sigma_{A\Phi} = T_1$
	$\sigma_{ym} + \sigma_{A\Phi} = T_2$
	$\sigma_{A\Phi} = \sum_{i=K21}^{K12} \sigma_{i(t)}$

 $_{\Gamma Z e} \sigma_{X}^{\Pi}, \sigma_{Y}^{\Pi}, \sigma_{Z}^{\Pi}$ - составляющие главных напряжений, МПа;

 γ - удельный вес пород, H/m^3 ;

Н - мощность налегающих горных пород, м;

λ- коэффициент бокового распора (определяемый коэф. Пуассона);

 $T_1,\,T_2$ - главные статические составляющие тектонических сил, МПа;

 $\sigma_{zm}, \sigma_{xm}, \sigma_{ym}$ - главные статические составляющие постоянных тектонических сил, неизменных в течение десятков лет, МПа;

σ_{AΦ}, ε_{AΦ} - временной ход астрофизических напряжений(МПа) и относительных деформаций;

σ_{АФ(t)} – временной показатель пульсации астрофизических напряжений;

 $\sum_{21}^{12} \sigma i(t)$ - суммарный вклад величин изменения НДС различных геологических

циклов.

С 1998 г. по 2013 г. лабораторией было отслежено изменение $\sigma_{A\Phi}$ на рудниках Урала в 11-и летнем цикле (рис.1) и зафиксировано при специальной обработке результатов измерения напряжений на Урале и Алтае, где они ранее фигурировали как тектонические пульсирующие напряжения $\Delta \sigma_{TT}$ [2].

Рисунок 1- Изменение НДС массива на рудниках в городах Урала и Алтая на фоне изменения излучения Солнца

На рисунке 1 показана связь солнечной активности СА с астрофизическими напряжениями $\sigma_{A\Phi}$ в массиве горных пород. Обращено внимание на солнечную активность СА, которая описывается двумя характеристиками: пятнообразованием, оцениваемым числом Вольфа и солнечной постоянной, оцениваемой излучением солнечной энергии S₀ Вт/м², и связанной с радиусом солнца R₀. Радиус Солнца измеряется инструментально со спутников с 1978года, а с 2013 года сделан прогноз. Полученные измерения $\sigma_{A\Phi}$ хорошо вписываются в график S₀. Максимум S₀ соответствует минимуму $\sigma_{A\Phi}$, а минимум S₀ приходится на максимальное сжатие Земной коры.

Закономерности формирования природных напряжений в различных регионах мира представлены в виде графиков на рис.2-9.

Рисунок 2

Рисунок 3

www.auris-verlag.de

Eastern European Scientific Journal

4

Рисунок 7

Китай

Рисунок 8 - Изменение измеренных напряжений с глубиной

Рисунок 9 - Изменение измеренных напряжений с глубиной

Необходимо иметь в виду, что на графиках приведены результаты с учетом присутствия $\sigma_{A\Phi}$, средняя величина которых до 2000 года не превышала 4 МПа.

$$\sigma_{Z}^{\Pi} = -\gamma H + \sigma_{Zm} + \sigma_{A\Phi} , \qquad (3)$$

$$\sigma_{\Gamma}^{\Pi} = \left(\sigma_{x}^{\Pi} + \sigma_{y}^{\Pi}\right)/2 = -\lambda\gamma H + \sigma_{A\Phi} + \left(\sigma_{xm} + \sigma_{ym}\right)/2 .$$

В общем виде приведенные результаты измерения напряжений можно представить зависимостями:

1. Урал [1] $\sigma_Z^{\Pi} = -0.03H$;	$\sigma_{\Gamma}^{\Pi} = -(16 + 0.03H)$
2. Скандинавия [4] $\sigma_{z}^{\Pi} = -0.02$	27 H ; $\sigma_{\Gamma}^{\Pi} = -(17.3 + 0.03H)$
3. Канада [4] $\sigma_Z^{\Pi} = -0.025H$; с	$\sigma_{\Gamma}^{\Pi} = -(12 + 0.04H)$
4. CIIIA [4] $\sigma_Z^{\Pi} = -(0+0,0027H)$; $\sigma_{\Gamma}^{\Pi} = -(5.0 + 0.0225H)$
5. Южная Африка [4] $\sigma_z^{\Pi} = -0.02$	27 <i>H</i> ; $\sigma_{\Gamma}^{\Pi} = -(7+0,012H)$
6. Китай [5] $\sigma_Z^{\Pi} = -0.0253H$; с	$\sigma^{\Pi}_{\Gamma \min} = -(5,8+0,0225H)$
	$\sigma^{\Pi}_{\Gamma \max} = -(3,1+0.016H)$
7. Австралия [4] $\sigma_Z^{\Pi} = -0.02H$;	$\sigma_{\Gamma}^{\Pi} = -(17 + 0,009H)$
8. Япония [6] $\sigma_Z^{\Pi} = -0,0265H;$	$\sigma_{\Gamma}^{\Pi} = rac{\sigma_{\Gamma\min}^{\Pi} + \sigma_{\Gamma\max}^{\Pi}}{2} = -0.02H$

В результате действия этих напряжений в конструктивных элементах систем разработки и горных выработках формируются техногенные напряжения.

К конструктивным элементам систем разработки при отработке крутопадающих рудных месторождений на большой глубине, т.е. глубже 500 м, по которым оценивается эффективность и безопасность горных работ, следует отнести:

- кровлю и стенки камер;
- целики;
- призабойный рудный и породный массивы;
- днища выемочных элементов;
- подготовительно-нарезные выработки.

Отдельно следует рассмотреть капитальные горные выработки, находящиеся за пределами зоны влияния горных работ: стволы, квершлаги и штреки.

В приконтурной части капитальных горных выработок происходит концентрация природных напряжений в соответствии с зависимостями

- в стволах

где

$$\sigma_{\theta \max} = K_{\max} \sigma_{\Gamma \max}^{\Pi} - K_{\min} \sigma_{\Gamma \min}^{\Pi}, \qquad (4)$$

$$\sigma_{\Gamma \max}^{\Pi} = \sigma_{3}^{\Pi}; \qquad \sigma_{\Gamma \min}^{\Pi} = \sigma_{i}^{\Pi}$$

- в горизонтальных выработках,

$$\sigma_{\theta \max} = K_{\max} \sigma_{\Gamma \max}^{\Pi} + K_{\min} \sigma_{Z}^{\Pi}, \qquad (5)$$

В приконтурном слое пород, толщиной 0,1 радиуса выработки коэффициенты концентрации напряжений $\sigma_{\Gamma max}^{\Pi}$ изменится от 3 до 2,4, т.к. в среднем K_{max}=2,7, а K_{min} изменяется от -1,8 до -0,6 и в среднем K_{min}=-0,8.

По заведенной традиции результаты измерения напряжений на рудниках мира в большинстве случаев представлены σ_z - вертикальные; $\sigma_{r cp}$ - средние горизонтальные.

Анализ большого числа результатов измерения напряжений на месторождениях мира показывает, что отношение $\sigma_{\Gamma \max}^{\Pi} : \sigma_{\Gamma \min}^{\Pi} u \sigma_{\Gamma \max}^{\Pi} : \sigma_{Z}^{\Pi}$; изменяется от 1 до 1.5÷2.0 и более. На Урале это отношение в среднем равно 1,35.

При
$$\sigma_{\Gamma \max}^{\Pi} = \sigma_{\Gamma \min}^{\Pi} = 1$$
 средние напряжения $\sigma_{cp}=1$, т.е. $\sigma_{\Gamma \max}^{\Pi} = \sigma_{cp}$
При $\sigma_{\Gamma \min}^{\Pi} = 0.5 \sigma_{\Gamma \max}^{\Pi}$ и $\sigma_{max}=1$; $\sigma_{cp}=0.75 \sigma_{\Gamma \max}^{\Pi}$, т.е. $\sigma_{\Gamma \max}^{\Pi} = 1.33 \sigma_{cp}$

В целом по мировым данным можно принять, что $\sigma_{\Gamma \max}^{\Pi}$ превышают σ_{cp} в 1,0÷1,33 раза, т.е. в среднем более чем в 1,17 раза.

В приконтурной части выработки в одном случае при $\sigma_{\Gamma \max}^{\Pi} = \sigma_{\Gamma}^{\Pi} = \sigma_{cp}$

 $\sigma_{\Theta max} = \sigma_{cp} * 2,7 + (-0,8) \sigma_{cp} = 1,9 \sigma_{\Gamma \max}^{\Pi}$,а в другом случае при $\sigma_{\Gamma \max}^{\Pi} = 1,17 \sigma_{cp}$ и $\sigma_{\Gamma \min}^{\Pi} = 0,86 \sigma_{cp}$

$$\sigma_{\Theta max}$$
=2,7*1,17 σ_{cp} +(-0,8)*),86* σ_{cp} =2,47 σ_{cp} или равно 2,1 $\sigma_{\Gamma \max}^{\Pi}$

В конструктивных элементах систем разработки концентрация природных напряжений в том участке массива горных пород, где располагаются подготовительнонарезные выработки, может достигать 2-4, т.е. в среднем 3.0. С учетом этого обстоятельства в приконтурной части подготовительно-нарезных выработок напряжения могут достигать

$$\sigma_{\theta \max} = \sigma_{cp} \cdot 2.1 \cdot 3.0 = 6.3 \cdot \sigma_{cp}.$$

Величины напряжений в приконтурной части капитальных и подготовительнонарезных выработок, без которых невозможна добыча полезного ископаемого подземным способом, приведены в табл. 2 и 3.

			Напряж	ения в массиве, М	Напряжения в конструкциях, МПа		
п/п	Регион	$\sigma_{\rm cp} = \frac{\sigma_3^{\Pi} + \sigma_1^{\Pi}}{2};$	σ _{ср} при Н=500м	$\sigma_3^{\Pi} = \sigma_{cp} \cdot 1,17$	$\sigma = \sigma_3^{\Pi} + \sigma_{A\Phi};$ при $\sigma_{A\Phi} = 0;$ $\sigma_{A\Phi} = -20;$ $\sigma_{A\Phi} = -40;$	$\sigma_{\theta} = \sigma \cdot 2,1;$ В конструктивных элементах системы разработки, в капитальных выработках	$\sigma_{\theta} = \sigma \cdot 6,3;$ В подготовительно- нарезных выработках
	Урал	-(16,0+0,03H)	-31	-36	-36/-56/-76	-76/-118/-160	-227/-353/-479
	Скандинавия	-(17,3+0,3H)	-32	-37	-37/-57/-77	-78/-120/-162	-233/-359/-485
	Канада	-(12,0+0,04H)	-32	-37	-37/-57/-77	-78/-120/-162	-233/-359/-485
	США	-(5,0+0,0225H)	-16	-19	-19/-39/-59	-40/-82/-105	-120/-246/-315
	Южная Африка	-(7,0+0,012H)	-13	-15	-15/-35/-55	-32/-74/-116	-95/-220/-347
	Китай	-(4,4+0,019H)	-14	-16	-16/-36/-56	-34/-76/-118	-101/-227/-353
	Авсралия	-(17,0+0,009H)	-22	-26	-26/-46/-66	-55/-97/-139	-164/-290/-416
	Япония	-0,02H	-10	-12	-12/-32/-52	-25/-67/-109	-76/-202/-328
	Япония*	-(20,0+0,026H)	-33	-38	-38/-58/-78	-80/-122/-164	-239/-365/-491

Таблица 2 - Величины напряжений в приконтурной части капитальных и подготовительно-нарезных выработок на глубине 500м

			Напряже	ния в массиве, МІ	Ta	Напряжения в конструкциях, МПа	
п/п	Регион	$\sigma_{\rm cp} = \frac{\sigma_3^{\Pi} + \sigma_1^{\Pi}}{2};$	σ _{ср} при H=1000м	$\sigma_3^{\Pi} = \sigma_{cp} \cdot 1,17$	$\sigma = \sigma_3^{\Pi} + \sigma_{A\Phi};$ при $\sigma_{A\Phi} = 0;$ $\sigma_{A\Phi} = -20;$ $\sigma_{A\Phi} = -40;$	$\sigma_{\theta} = \sigma \cdot 2,1;$ В конструктивных элементах системы разработки, в капитальных выработках	$\sigma_{\theta} = \sigma \cdot 6,3;$ В подготовительно- нарезных выработках
	Урал	-(16,0+0,03H)	-46	-54	-54/-74/-94	-113/-155/-197	-340/-466/-592
	Скандинавия	-(17,3+0,3H)	-47	-55	-55/-75/-95	-115/-157/-199	-346/-472/-598
	Канада	-(12,0+0,04H)	-52	-61	-61/-81/-101	-128/-170/-212	-384/-510/-636
	США	-(5,0+0,0225H)	-28	-33	-35/-55/-75	-69/-111/-153	-207/-334/-460
	Южная Африка	-(7,0+0,012H)	-19	-22	-22/-42/-62	-46/-88/-130	-139/-265/-391
	Китай	-(4,4+0,019H)	-23	-27	-27/-47/-67	-56/-98/-140	-170/-296/-422
	Австралия	-(17,0+0,009H)	-25	-29	-29/-49/-69	-70/-118/-166	-209/-353/-497
	Япония	-0,02H	-20	-23	-23/-43/-63	-48/-90/-132	-145/-270/-397
	Япония*	-(20,0+0,026H)	-46	-54	-54/-74/-94	-113/-155/-197	-340/-466/-592

Таблица 3 - Величины напряжений в приконтурной части капитальных и подготовительно-нарезных выработок на глубине 1000м

Примечание: * приведено напряженное состояние на территории с максимальным сжатием.

В таблицах 2 и 3 приведены средние напряжения в приконтурной части выработок и с учетом того, что прочность крепких горных пород находится в пределах 100-300 МПа, в 2020-2030 гг. доступ к полезным ископаемым на глубинах более 500 м и, тем более 1000 м, будет чрезвычайно затруднен, а в ряде случаев невозможен при существующих технологиях и способах ведения горных работ, особенно в России, Канаде и Скандинавии.

В то же время, судя по значительному разбросу измеренных напряжений на месторождениях мира, напрашивается вывод о том, что аргументированно об эффективности и безопасности ведения горных работ и обосновании технологии на каждом месторождении можно будет сделать только после измерений напряжений именно на этом месторождении и определении тренда изменения $\sigma_{A\Phi}$ на ближайшие 10-20 лет.

Подобная сложная геомеханическая обстановка могла быть 400 лет назад, но в то время не было глубоких шахт, карьеров и плотин высоконапорных ГЭС. Судя по изменению солнечной активности в 17 веке должно было наблюдаться максимальное сжатие Земли в 400-летнем цикле (рис.2). К началу 19 века было максимальное сжатие Земли в 200-летнем цикле, но в 400-летнем этот период соответствовал минимальному сжатию, что нивелировало общее сжатие Земли. Начало 20 века соответствовало максимальное сжатия в 400 и 200-летнем циклах. Поэтому на этом фоне инструментально зафиксированы изменения НДС Земной коры в 11-летних циклах во второй половине 20 века соответствовали средним показателям, но даже в этих условиях в экстремумах 11-и летних циклов происходили катастрофические разрушения горных конструкций и элементов ГЭС (табл.4).

Объект	Выс ота плот ины, м	Начал о строит ельств а (пуск), год	Авария, год	$\sigma_{\rm TII}$	Примечание		
	ГЭС в каньонах						
Сэнт-Френсис (Калифорния)	60	1924	1928	min	Обломило береговые секции в результате расширения каньона и ослабления их контакта с береговыми откосами		
Тактогульская	215	(1975)	1982-83	\approx max	Обрыв болтов крышки турбины в		

Таблица 4 - Аварии на ГЭС, рудниках и шахтах

www.auris-verlag.de

					результате деформации колодца
					при его сжатии
Нурекская	300	1961	1083	≈ max	Обрыв 50 из 72 гаек и шпилек
Пурскская	500	(1972)	1705	/~ IIIdX	(69%) крышки турбины, то же
Саяно-	275	1967	2009	~ max	Обрыв 65% гаек и шпилек
Шушинская	215	(1978)	2009	~ max	крышки турбины, то же
			Рудники	и шахты	
					Разрушение бетонной крепи,
Р-к			1064		перекрепка 112м железобетонной
Таштагольский		-	1964	max	крепью.
шх. Ново-		1060	1071		Крепь разорвало по 3-м азимутам,
Капитальная		1900	19/1	111111	трещины шириной 20-200 мм
					L=10 м
Р-к					Трещины в бетонной крепи на Н-
Таштагольский,			1001		560-606 м и в ж-б крепи на
Ствол			1991	min	H=840-965 м, Перекрепка H=756-
«Сибиряк»					865м
Ствол в г.		1000	1004		Разрушено 200 м бетонной крепи
Хромтау		1980	1984	max	Н=520-720 м
					Разрушение вертикального и
шх. Сан-Хосе			2010	max	наклонного стволов H=400 и 500
(ЧИЛИ)					М
Березниковский			1096		2
рудник-3			1980	max	затопление рудника
Соликамский			1005	mov	Землетрясение с магнитудой 5
рудник-2			1995	max	баллов
Березниковский			2006	≈ max	Затопление рулника
рудник-1			2000	i indx	
Соколовский			2006	may	Затопление рулника
рудник			2000	шал	Затопление рудника
Шх.имени			2006		Виброс газа Порибно 13 нен
Засядько	1978		2000-	\approx max	
Украина			2007		1101 иоло 89 чел.
Шх. им.Ленина			0000		H 641
Казахстан			2006	\approx max	Погио 41 чел.
IIIx. Halemba					
Силезия	1030		2006	\approx max	Погибло 23 чел.
Шх.					
Ульяновская			2007	\approx max	Погибло 110 чел.
Кузбасс					
Шх. Распадская			2010		Пания 00 г
Кузбасс			2010	max	погиоло 90 чел.

В начале 21 века, т.е. к 2020-2030 гг., максимальное сжатие Земли будет соответствовать сумме деформаций в 400, 200, 90 и 11-летних циклах, что видно на рис.2.

Рисунок 2 - Графики солнечной активности за все время наблюдений и прогноз на будущее

На основании проведенных исследований можно сделать следующие выводы.

1. К главным геомеханическим факторам, влияющим на эффективность и безопасность горных работ следует отнести физико-механические свойства массива, а не образца, природные напряжения в массиве горных пород и их концентрацию в конструктивных элементах систем разработки и горных выработках.

2. Впервые в мировой практике установлено, что в дополнении к гипотезам формирования природных напряжений в массиве в результате суммирования гравитационных γH и условно постоянных тектонических напряжений σ_т по А.Гейму,

А.Н.Диннику и Н.Хасту необходимо учитывать переменную астрофизическую составляющую $\sigma_{A\Phi}$.

Астрофизические напряжения с цикличностью 11 лет в 20 веке достигали 10-15 МПа, а в начале 21 века могут увеличиться до 20-40 МПа.

4. С учетом $\sigma_{A\Phi}$ в 21 веке во всех регионах мира напряжения в приконтурной части капитальных и подготовительно-нарезных выработок могут превысить прочность пород в 1,5-4 раза, что затруднит, а в некоторых случаях сделает невозможным проникновение под землю на глубинах более 500 м. Особенно это касается России, Скандинавии, Канады и Японии.

Reference:

1. Zubkov A.V. Geomechanics and Geotechnology / A.V. Zubkov. - Ekaterinburg: IGD RAS, 2001. – 335 p.

2. Zubkov A.V., Zoteev O.V., Smirnov O.Y. dr. Regularities of formation and stress-strain state of the Earth's crust in the Urals time // Litosfera. 2010. № 1. pp. 84-93.

3. Kim D.N. Influence of structure on the shear strength of the array and define division calculated mechanical characteristics / D.N. Kim // Mining pressure Pinch of rocks and methods of surveying works: Sat scientific. tr. / VNIMI. - Issue. 72. - L., 1969. - pp. 568 – 585. 4. Brown E. T. Trends in relation between measured in situ stresses with depth / E. T. Brown,

E. Hoek // Int.J.Rock Mech.Min.Sci & Geomech. -1978. - Vol.15. - № 4. - P. 211 - 215.

5. YANG Shu-Xin, YAO Rui, CUI Xiao-Feng, CHEN Qun-Ce, HUANG Lu-Yuan // CHINESE JOURNAL OF GEOPHYSICS. – 2012. - Vol. 55. - No.6. - Р. 708 -718. НАЗВАНИЯ СТАТЬИ НЕТ

6. Sugawara K. Measuring rock stress and rock engineering in Japan / K. Sugawara. - Kumamoto: Department of Civil Engineering and Architecture, Japan. -1997. - Vol. 15, no 1.